

Th
is

 w
or

k
is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e
Co

m
m

on
s

At
tr

ib
ut

io
n

4.
0

In
te

rn
at

io
na

l L
ic

en
se

ht
tp

://
cr

ea
ti

ve
co

m
m

on
s.

or
g/

lic
en

se
s/

by
/4

.0
/

Repenning, A. (2025). From TikTok to Hard Fun. Progressive Engagement in Computational
Thinking through Game Design. Constructionism Conference Proceedings, 8/2025, 227–238.
https://doi.org/10.21240/constr/2025/48.X

Full Paper

From TikTok to Hard Fun

Progressive Engagement in Computational Thinking
through Game Design
Alexander Repenning1

1 PH FHNW, School of Education, Brugg-Windisch, Switzerland

Abstract
This paper examines how constructionist learning principles can be maintained in an era of
shortened attention spans and passive content consumption. While TikTok‘s own research
shows that 50 % of users find videos over 60 seconds stressful, we demonstrate that meaning-
ful creative engagement remains possible through carefully designed learning progressions.
Using data from STEAM Discovery Fairs, we analyze how students across different grade
levels and genders engage with RULER.game, a Computational Thinking Tool enabling
rapid creation of programmable video game characters. Our findings reveal that while over-
all engagement levels were high, boys and girls derived enjoyment from different aspects
– girls primarily from design elements and boys from programming components. The study
demonstrates that by providing appropriate scaffolding and tools, students can quickly tran-
sition from passive consumers to active creators, even within perceived modern attention
constraints. These results suggest that constructionist principles remain viable when learn-
ing designs thoughtfully balance cognitive and affective challenges while accounting for
gender-specific preferences in creative computing activities.

Keywords and Phrases: computer science education research, block-based programming,
programming by example.

1. Introduction
The foundational principles of constructionism emphasize children as active creators
of their learning experiences, particularly in mathematics and programming. How-
ever, today’s reality shows an increasing trend toward passive, consumption-oriented
technology use, even in educational settings. This shift away from creation is further
amplified by the evolution of information technologies – from the web to search en-
gines to generative AI – which increasingly think for us rather than serve as “objects
to think with” as Seymour Papert (Papert, 1980) originally envisioned.

The history of constructionist tools like Logo highlights this tension. In 1999, Papert
himself acknowledged the need for evolution (Kahn, 2007), stating “I could not agree
more with you about current Logo being out of date and am planning to immerse

https://doi.org/10.21240/constr/2025/48.X
https://orcid.org/0000-0002-2165-7533

228

From TikTok to Hard Fun

myself in thinking about what a language for 2005 (or so) could be.” While many
modern programming environments exist, they often fail to fully embrace contempo-
rary affordances that could support creative learning.

This challenge is particularly visible in the context of mobile devices. Allan Kay’s
vision (Kay, 1972) of the Dynabook – a portable, collaborative computing device for
children – has technically been achieved, yet these devices face increasing resistance
in educational settings. Many schools and districts are moving to ban smartphones,
raising questions about whether the challenges lie in the technology itself or in how
society employs these tools.

The concept of “hard fun” (Papert, 1985) offers a framework for understanding this
challenge, suggesting the need for a balance between cognitive and affective chal-
lenges through rewarding activities that connect with students’ interests. Howev-
er, current trends in social media, particularly platforms like TikTok, threaten this
balance. Research shows that nearly 50 % of TikTok users find videos longer than
60 seconds stressful (Stokel-Walker, 2022), with many watching content at double
speed. This “TikTok generation” exemplifies a societal shift where sustained engage-
ment with challenging tasks is increasingly replaced by rapid-fire, algorithm-driven
content consumption.

To explore how modern tools could bridge the gap between consumption and cre-
ation, we investigated approaches that could effectively support students’ transition
from passive consumers to active producers with two research questions:

RQ1: How do engagement levels and understanding of programming differ
across grade levels and between genders?

RQ2: What are the gender-specific preferences and prior experiences that might
influence future programming participation?

Through STEAM (Science Technology Engineering Art and Math) Discovery Fairs,
we tested how quickly students could transition from consumers to creators using the
RULER.game Computational Thinking Tool. Students completed a creative cycle
in just 15 minutes: drawing video game characters, digitizing them, and bringing
them to life through basic programming. This compressed timeline demonstrated
that meaningful engagement in computational thinking (Saqr et al., 2021) and crea-
tive production does not necessarily require lengthy introduction periods.

2. Related Work
Constructionist learning theories (Kafai et al., 1996; Papert et al., 1993) emphasize
that effective learning occurs through building meaningful artifacts, requiring pro-
gramming tools that provide key affordances to help learners overcome cognitive
challenges. Creating Logo, one of Papert’s goals was to make programming more
accessible by mitigating syntactic programming challenges. Block-based program-
ming introduced by AgentSheets (Repenning et al., 1996) and popularized with
Scratch (Resnick et al., 2009) completely eliminated syntax errors. However, block-
based programming environments like Scratch face several key challenges despite
their benefits in removing syntactic barriers. While they effectively prevent syntax
errors (Mouza et al., 2020) through their jigsaw puzzle-like interface (Glinert et al.,
1984) research reveals that students still encounter significant logical and semantic

229

Alexander Repenning

difficulties. Ben-Yaacov et al. (Ben-Yaacov et al., 2023) found that 39 % of student
program executions resulted in errors related to issues like counting and orientation
misconceptions rather than syntax. The debugging process is particularly challeng-
ing as many block-based environments provide limited debugging support (Hromk-
ovic et al., 2021) and may intentionally suppress error messages (Deiner et al., 2023).
Additionally, block-based programming tools have been criticized for potentially
leading to code smells and inefficient programming patterns, as demonstrated in
studies of Scratch programs (Hermans et al., 2016). These challenges highlight that
while block-based programming eliminates syntactic barriers, semantic and logical
programming challenges likely outweigh syntactic ones.

Equally important to cognitive challenges are affective challenges (Picard et al.,
2004) in computational learning environments. Constructionist learning emphasizes
building personally meaningful artifacts, but the nature of these artifacts and how
tools and learning designs can scaffold their creation requires careful consideration.
Instead of abstract computation like calculating prime numbers, programming can
enable creative expression through diverse mediums: controlling robots, telling in-
teractive stories through environments like Alice (Kelleher et al., 2007), building
scientific simulations with NetLogo (Wilensky et al., 2015), programming robots
(Ajaykumar et al., 2021), designing games (Kafai, 1995; Overmars, 2004; Spieler
et al., 2018), creating interactive E-textiles (Spieler et al., 2020), and programming
toys (Janka, 2008). If the goal is to achieve Papert’s vision of “hard fun,” it becomes
essential to scaffold what Dewey (Dewey, 1913) called “instrumental motivation” –
where learners see clear connections between their efforts and meaningful outcomes.

However, even with strong initial motivation, providing low-threshold tools like
block-based programming is insufficient if the tools and learning designs don’t fa-
cilitate a “gentle slope” progression from initial engagement to more sophisticated
creation. Alan Perlis captured this challenge in his warning about the Turing tar-
pit (Perlis, 1982): “Beware of the Turing tar-pit in which everything is possible but
nothing of interest is easy.” The journey from TikTok-style passive consumption to
meaningful “hard fun” creation requires carefully designed learning progressions
that balance both cognitive and affective challenges at each step. This progression
must maintain engagement while gradually increasing complexity, allowing learners
to build confidence and competence simultaneously.

3. Approach: Accessibility-to-Challenge Progression
To conceptualize a progression towards hard fun it is necessary to have a sense of
space outlining the interaction between cognitive and affective challenges. This
framework provides a lens through which we can analyze both grade-level pro-
gression in programming understanding and gender-specific engagement patterns,
directly addressing our research questions about how different groups of students
transition from consumers to creators. Figure 1 describes what we call the Accessibil-
ity-to-Challenge Progression (4a – 4b).

The framework builds on our Cognitive/Affective Challenges space (Repenning,
2016), which emerged from research exploring challenges preventing learners from
transitioning from “have to” to “want to” programming. This model is particularly
relevant as we attempt to engage today’s students who, according to research by
TikTok itself, find videos longer than 60 seconds stressful and often watch content
at double speed (Stokel-Walker, 2022). These shortened attention spans make it even

230

From TikTok to Hard Fun

more critical to understand how programming activities can be structured to over-
come both cognitive barriers (making programming accessible) and affective barriers
(making programming exciting) simultaneously.

A key insight from exploring the Cognitive/Affective Challenges space is that moti-
vation and cognition in game design (Walter et al., 2007) are deeply interconnected.
Even if students are initially motivated to create a game or simulation, if the tools
are too complex, they’ll likely abandon the effort because the return on investment
isn’t clear. Conversely, if programming is made too simplistic without meaningful
creation possibilities, students may complete tasks but won’t develop the “hard fun”
engagement that Papert described. The Accessibility-to-Challenge Progression rep-
resents a pathway for thoughtfully balancing these dimensions as students develop
programming competency

The Cognitive/Affective Challenges space can be illustrated through four character-
istic examples: (1) Writing C++ programs to compute prime numbers represents the
classic “hard and boring” scenario – it poses significant cognitive challenges for nov-
ice programmers while offering minimal intrinsic motivation for most people except
the already mathematically inclined. (2) Cleaning up a room exemplifies low cog-
nitive challenge but high tedium – its Sisyphean nature, where effort is quickly un-
done, makes it difficult to maintain intrinsic motivation. (3) Doom scrolling through
TikTok represents the “easy and exciting” extreme – demonstrated by millions of
users spending hours consuming short-form content, though such passive entertain-
ment typically offers limited developmental value. (4) The Accessibility-to-Challenge
Progression is well illustrated by crossword puzzles, particularly the New York Times
series that gradually increases in difficulty from Monday to Saturday, showing how
cognitive challenge can increase while maintaining engagement through carefully
calibrated progression.

Figure 1: Developing a Accessibility-to-Challenge Progression towards “hard fun”.

231

Alexander Repenning

While these examples illustrate the challenge space, they also suggest a pathway
forward. The critical need is to help students transition from the passive consump-
tion habits of TikTok (3) to engaging in meaningful creative challenges (4) through
carefully designed affordances that go beyond mere syntactic support.

4. Tool: RULER.game
RULER.game (Figure 4, left) was developed as a Collaborative Computational
Thinking Tool to facilitate the transition from consumers to producers by enabling
students to create their own video games through what we call proxy-based program-
ming (Repenning et al., 2024). This approach affords pragmatic prebugging – proac-
tive debugging support that helps prevent logical errors before they occur. Compar-
ing to established error rates of block-based programming (Ben-Yaacov et al., 2023),
our study shows that pragmatic prebugging results in error rates ten times lower than
traditional block-based programming (Repenning et al., 2024).

Following a long line of Computational Thinking tools (Repenning, 2017) including
AgentSheets as the first block-based programming tool (Repenning et al., 1996),
AgentCubes as a 3D Computational Thinking Tool adding pragmatic debugging
support to block-based programming (Repenning, 2013a), RULER.game introduc-
es proxy-based programming to make programming more “accessible and exciting”
(Repenning, 2013b).

Recent research on programming languages supporting children’s programming has
focused heavily on syntax while largely neglecting pragmatics. Pragmatic debugging
programming support – approaches that scaffold understanding “what code means
in specific situations” – can be found in foundational work exploring programming
by example (Cypher, 1993; Lieberman, 2001; Repenning et al., 2001), and live pro-
gramming (McDirmid, 2007, 2013). In programming by example (Figure 2, bottom)
a human changes a situation, e.g., by interacting with objects in a game, to have
the computer change the code. Conversely, in live programming (Figure 2, top) the
human changes code to have the computer update the situation. Without a proper
mechanism to define a focus both programming paradigms can be difficult to con-
trol by the user (Ferdowsifard et al., 2020). Proxy-based programming, in contrast,
employs the notion of a proxy object serving as Logo turtle-like embodiment through
body syntonicity (Watt, 1998) helping users to focus and to understand causal con-
nections between code and situation. Combined, the human and the computer use
this proxy in a sandbox to proactively explore future situations (Figure 2, middle).
Imagine a student programming a game of Pac-Man. That student would select Pac-
Man in its current situation and start programming. The Pac-Man would be cloned
into a visible proxy object looking like the a ghosted Pac-Man image. The student
can now issue various actions to see possible future situations by observing the proxy
execute these actions. Unlike with basic testing functions found in programing tools
like Logo, AgentSheets, Scratch or AgentCubes, this experimentation takes place in
a protected sandbox preventing unwanted side effect or the need to tediously snap
code pieces apart for the sole purpose of testing.

Proactive proxy-based programming will reveal programming errors the instance
they are made. That is, users do not have to write and then execute a complete pro-
grams such as programs to solve a Hour of Code like challenge (Repenning et al.,

232

From TikTok to Hard Fun

2016) or the Kodetu challenges (Ben-Yaacov et al., 2023). Users can fix the error
and RULER.game will replay the proxy actions to get ready for more corrected
instructions.

Figure 2:

code situation

Live Programming
 human changes code computer updates situation

Programming by Example
 human changes situation computer updates code

Proxy-Based Programming
 + human + computer use proxy in sandbox

to proactively explore future situations

Proxy-Based Programming uses a embodied proxy in a sandbox to explore
possible code and situation futures.

RULER.game helps overcome the Turing tar-pit (Perlis, 1982) through the integra-
tion of AI actions that make sophisticated behaviors accessible. With the RULER.
game AI actions even 1st graders (Repenning, 2024) were able to use sophisticated
AI pathfinding (Repenning, 2006) to program ghosts to collaboratively pursue Pac-
Man through a maze. In other programming languages employed to make games,
and aimed at kids, such as Scratch, this level of game AI would be essentially im-
possible, forcing programmers to resort to less compelling game mechanics such as
ghosts moving toward Pac-Man while ignoring walls, or implementing random or
scripted movement patterns.

5. Intervention: Create Your Own Video Game
To explore the research questions we evaluated a compact learning design for
STEAM Discovery Fairs having kids create the start of a simple video games in
about 15-20 minutes:
1. 1st Table: draw your own video game character on paper (Figure 3, left)
2. 2nd Table: create RULER.game project on iPad (Figure 3, right)
3. scan in game background. Some background images were provided (Figure 3,

right)
4. scan in own video game character
5. learn how to program simple rules to make character controllable through direc-

tional gamepad

233

Alexander Repenning

Figure 3: Left: 1st Table: Draw your own character. Right: 2nd Table. Programming
and play testing

It was not clear if a station focusing on programming would be sufficiently attractive
to kids especially when surrounded by a vast array of activities constantly competing
with their attention. The tunSolothurn.ch 2024 event offered 46 hands-on experi-
ments across 24 research stations, allowing over 8,000 children and youth to engage
with STEM activities in creative and engaging ways. The diverse offerings included
creating handmade cooling pads, programming robots, experimenting with virtual
reality, assembling electronic pins, constructing bridges from popsicle sticks, build-
ing metal puzzles, and participating in “explosive” science shows.

The station, aided by 2-3 pre-service teacher students from the School of Education,
FHNW Switzerland, was barely able to keep up with the barrage of kids eager to
make their own video games. In the few moments where there was no line waiting
to participate, kids were allowed to continue with programming to create additional
characters, and to extend programming, e.g., with collision detection or score count-
ing. The minimal expectation was to have kids create a game with one character that
they could move around the world (Figure 4).

Figure 4: Left: RULER.game game with one character programmed.
Right: Example characters drawn.

Many kids returned to the station trying to continue with programming. Some came
back waiting for a multi-person opening to work on a game with their friends. Some
kids returned on different days with teachers, parents or even grandparents.

http://tunSolothurn.ch

234

From TikTok to Hard Fun

6. Evaluation
To evaluate the learning design we collected the games produced and asked students
to fill out a short questionnaire. The “Create Your Own Game” station operated for
3 days during which over 300 games were created. To provide some opportunity for
students to continue with game design at home, or school, projects were uploaded to
the RULER.game server. Students received a RULER.game flyer with information
for parents and teachers including a printed QR code label providing a link to their
current project.

Before leaving the station N = 189 students filled out a short questionnaire with the
following questions:
1. What grade are you in? (number)
2. What is your gender? (male/female)
3. Enjoyment: I enjoyed creating a game: strongly disagree: -2, disagree: -1, agree: 1,

strongly agree: 2
4. Understanding: I understand how to program: strongly disagree: -2, disagree: -1,

agree: 1, strongly agree: 2
5. Retention: I would like to continue programming: yes/no
6. where would you like to continue to program
7. What kinds of games are you currently playing? (open)
8. What part of the activity did you like best? (open)
9. What part of the activity did you find difficult? (open)
10. Have you programmed before? yes/no
11. What did you program before? (open)

Exploring RQ1: “How do engagement levels and understanding of programming dif-
fer across grade levels and between genders?” We found a mild scissor effect (Figure 5)
where engagement decreases while understanding increases (after grade 2). The cross-
over with enjoyment and the very high self-reported levels of understanding could
be outliers due to the small sample size of students from grade 1 (5 girls and 3 boys).

Figure 5: Scissor effect: enjoyment (Q3) decreases (left), while understanding (Q4)
increases (right).

235

Alexander Repenning

Exploring RQ2: “What are the gender-specific preferences and prior experiences that
might influence future programming participation?” We looked at retention, that is,
the claimed interest to continue with programming in Figure 6 left. This retention
suggested by the number of students wanting to continue to program is high but
even larger for boys (88.9 % n = 135) compared to girls (67.4 % n = 46). 8 students did
not identify gender. Interestingly, the percentage of girls in 6th grade reporting prior
programming experience (60 %, Figure 6, right) is almost 3 times larger than the per-
centage of the boys with prior programming experience (23 %).

Figure 6: Interest (Q5) in continuing to program (left) versus prior programming (Q10)
experience (right).

Looking at more depth into gender specific preferences we found substantial differ-
ences in the most enjoyed aspects of the activity. As an open question students men-
tion a big array of reasons including “everything” but there were two coded clusters
called “design” and “programming.”

Figure 7: (Q 8) Girls enjoy design most (left), buys enjoy programming most (right).

Figure 7 shows a flip with two highly significant gender differences (design: p < 0.001,
programming: p = 0.006) and very large effect sizes (Hill et al., 2008) between the
two categories. Both “design” with an effect size (Cohen’s d) of 3.97 and “program-
ming” with an effect size of -3.14 demonstrate these pronounced differences. In sum-
mary, while game design activities are enjoyed by both genders comparably, their
sources of enjoyment differ substantially.

236

From TikTok to Hard Fun

Limitations to the evaluation included the somewhat informal nature of the inter-
vention and that there was no control group and the length of intervention varied
widely. Additionally, as a science fair setting, some students self-selected to partici-
pate in this activity among many competing options, potentially biasing our sample
toward those already interested in programming or game design. The informal learn-
ing environment also made it difficult to control for prior knowledge and experience,
though we attempted to account for this through our questionnaire. The high-energy
atmosphere of the science fair, with 46 different hands-on experiments competing
for attention, meant that some students may have rushed through the activity. While
our pre-service teacher facilitators were trained on the activity, their varying levels
of experience with the tool could have influenced outcomes. Finally, our reliance on
self-reported data through the questionnaire, particularly for measures like under-
standing and enjoyment, may not fully capture actual learning outcomes.

7. Conclusions
Our findings challenge assumptions about the incompatibility between TikTok-era
attention spans and constructionist learning. Through our STEAM Discovery Fair
intervention, even first-grade students successfully created their own video games
using the RULER.game Computational Thinking Tool in about 15 minutes. While
the activity’s initial focus on drawing video game characters made it broadly ap-
proachable, our analysis revealed important engagement patterns across grade levels
and genders. Overall enjoyment was high, but boys and girls derived satisfaction
from different aspects – girls primarily valuing design elements and boys favoring
programming components. The tool’s proxy-based programming approach made
programming accessible while maintaining constructionist principles of personal cre-
ation. High retention rates and students returning for additional sessions suggest that
with appropriate scaffolding and tools, active creation can successfully compete with
passive consumption habits. These results demonstrate that constructionist learning
principles remain viable when learning designs thoughtfully balance cognitive and
affective challenges while accounting for diverse creative preferences.

References
Ajaykumar, G., Steele, M., & Huang, C.-M. (2021). A survey on end-user robot programm-

ing. ACM Computing Surveys (CSUR), 54(8), 1-36.

Ben-Yaacov, A., & Hershkovitz, A. (2023). Types of Errors in Block Programming: Driven
by Learner, Learning Environment. Journal of Educational Computing Research, 61(1),
178-207.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration. Cambridge, MA:
MIT Press.

Deiner, A., & Fraser, G. (2023). NuzzleBug: Debugging block-based programs in scratch.
arXiv preprint arXiv:2309.14465.

Dewey, J. (1913). Interest and effort in education: Houghton Mifflin.

Ferdowsifard, K., Ordookhanians, A., Peleg, H., Lerner, S., & Polikarpova, N. (2020).
Small-step live programming by example. Paper presented at the Proceedings of the 33rd
Annual ACM Symposium on User Interface Software and Technology.

Glinert, E. P., & Tanimoto, S. L. (1984). Pict: An Interactive Graphical Programming En-
vironment. IEEE Computer, 265-283.

Hermans, F., & Aivaloglou, E. (2016). Do code smells hamper novice programming? A con-
trolled experiment on Scratch programs. Paper presented at the 2016 IEEE 24th Interna-
tional Conference on Program Comprehension (ICPC).

237

Alexander Repenning

Hill, C. J., Bloom, H. S., Black, A. R., & Lipsey, M. W. (2008). Empirical benchmarks for
interpreting effect sizes in research. Child development perspectives, 2(3), 172-177.

Hromkovic, J., & Staub, J. (2021). The Problem with Debugging in Current Block-based
Programming Environments. Bulletin of EATCS, 135(3).

Janka, P. (2008). Using a programmable toy at preschool age: Why and how. Paper presented
at the Teaching with robotics: didactic approaches and experiences. Workshop of Inter-
national Conference on Simulation, Modeling and Programming Autonomous Robots.

Kafai, Y. B. (1995). Minds in play: Computer game design as a context for children’s learning.
Hillsdale, N.J.: L. Erlbaum Associates.

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking, and
learning in a digital world. Mahwah, NJ: Lawrence Erlbaum Associates.

Kahn, K. (2007). Should LOGO keep going forward 1? Informatics in Education-An Inter-
national Journal, 6(2), 307-321.

Kay, A. C. (1972). A personal computer for children of all ages. Paper presented at the Procee-
dings of the ACM National Conference.

Kelleher, C., Pausch, R., Pausch, R., & Kiesler, S. (2007). Storytelling alice motivates middle
school girls to learn computer programming. Paper presented at the Proceedings of the
SIGCHI conference on Human factors in computing systems.

Lieberman, H. (2001). Your Wish Is My Command: Programming by Example. San Fran-
cisco, CA: Morgan Kaufmann Publishers.

McDirmid, S. (2007). Living it up with a live programming language. Paper presented at the
OOPSLA ‘07: Proceedings of the 22nd annual ACM SIGPLAN conference on Object-
oriented programming systems and applications, Montreal, Quebec, Canada.

McDirmid, S. (2013). Usable Live Programming. Paper presented at the SPLASH Onward!,
Indianapolis, Indiana.

Mouza, C., Pan, Y.-C., Yang, H., & Pollock, L. (2020). A multiyear investigation of student
computational thinking concepts, practices, and perspectives in an after-school compu-
ting program. Journal of Educational Computing Research, 58(5), 1029-1056.

Overmars, M. (2004). Teaching computer science through game design. Computer, 37(4),
81- 83.

Papert, S. (1980). Mindstorms: Children, Computers and Powerful Ideas. New York: Basic
Books.

Papert, S. (1985). Hard Fun. Retrieved from http://www.papert.org/articles/HardFun.html

Papert, S., & Harel, I. (Eds.). (1993). Constructionism. Norwood, NJ: Ablex Publishing
Corporation.

Perlis, A. J. (1982). Special feature: Epigrams on programming. ACM SIGPLAN Notices,
17(9), 7-13.

Picard, R. W., S., P., Bender, W., Blumberg, B., Breazeal, C., Cavallo, D., . . . Strohecker,
C. (2004). Affective Learning – a Manifesto. BT Technology Journal, 22(4), 253-269.

Repenning, A. (2006). Collaborative Diffusion: Programming Antiobjects. Paper presented
at the OOPSLA 2006, ACM SIGPLAN International Conference on Object-Oriented
Programming Systems, Languages, and Applications, Portland, Oregon.

Repenning, A. (2013a). Conversational Programming: Exploring Interactive Program Ana-
lysis. Paper presented at the 2013 ACM International Symposium on New ideas, New
Paradigms, and Reflections on Programming & Software (SPLASH/Onward! 13), In-
dianapolis, Indiana, USA.

Repenning, A. (2013b). Making Programming Accessible and Exciting. IEEE Computer,
18(13), 78-81.

Repenning, A. (2016). Transforming “Hard and Boring” into “Accessible and Exciting”.
Paper presented at the NordiCHI 2016, Workshop on Cultures of Participation in the
Digital Age: From “Have to” to “Want to” Participate, Gothenburg, Sweden.

http://www.papert.org/articles/HardFun.html

238

From TikTok to Hard Fun

Repenning, A. (2017). Moving Beyond Syntax: Lessons from 20 Years of Blocks Progra-
ming in AgentSheets. Journal of Visual Languages and Sentient Systems, 3(July), 68-89.

Repenning, A. (2024). Escaping the Turing Tar-Pit with AI Programming Blocks. Paper
presented at the The 19th WiPSCE Conference on Primary and Secondary Computing
Education Research, Munich, Germany.

Repenning, A., & Ambach, J. (1996). Tactile Programming: A Unified Manipulation Para-
digm Supporting Program Comprehension, Composition and Sharing. Paper presented
at the 1996 IEEE Symposium of Visual Languages, Boulder, CO.

Repenning, A., & Basawapatna, A. (2016). Drops and Kinks: Modeling the Retention of Flow
for Hour of Code Style Tutorials. Paper presented at the The 11th Workshop in Primary
and Secondary Computing Education (WiPSCE 2016), Münster, Germany.

Repenning, A., & Basawapatna, A. (2024). RULER: Prebugging with Proxy-Based Pro-
gramming. Paper presented at the IEEE Symposium on Visual Languages and Human-
Centric Computing, Liverpool, UK.

Repenning, A., & Perrone-Smith, C. (2001). Programming by Analogous Examples. In H.
Lieberman (Ed.), Your Wish Is My Command: Programming by Example (Vol. 43, pp.
351-369): Morgan Kaufmann Publishers.

Resnick, M., Maloney, J., Monroy-Hernndez, A., Rusk, N., Eastmond, E., Brennan, K.,
. . . Kafai, Y. (2009). Scratch: programming for all. Commun. ACM, 52(11), 60-67.
doi:10.1145/1592761.1592779

Saqr, M., Ng, K., Oyelere, S. S., & Tedre, M. (2021). People, Ideas, Milestones: A Sciento-
metric Study of Computational Thinking. ACM Transactions on Computing Education
(TOCE), 21(3), 1-17.

Spieler, B., Krnjic, V., Slany, W., Horneck, K., & Neudorfer, U. (2020). Design, code, stitch,
wear, and show it! mobile visual pattern design in school contexts. Paper presented at the
2020 IEEE Frontiers in Education Conference (FIE).

Spieler, B., & Slany, W. (2018). Game development-based learning experience: Gender diffe-
rences in game design. arXiv preprint arXiv:1805.04457.

Stokel-Walker, C. (2022). TikTok Wants Longer Videos – Whether You Like It or Not.
Wired.

Walter, S., Barron, B., Forssell, K., & Martin, C. (2007). Continuing Motivation for Game
Design. Paper presented at the CHI 2007, San Jose, California, USA.

Watt, S. (1998). Syntonicity and the Psychology of Programming. Paper presented at the
Proceedings of the Tenth Annual Meeting of the Psychology of Programming Interest
Group, Milton Keenes, UK.

Wilensky, U., & Rand, W. (2015). An Introduction to Agent-Based Modeling: Modeling Na-
tural, Social, and Engineered Complex Systems with NetLogo: MIT Press.

	_heading=h.agqfmzrj0rzs
	_heading=h.za08vfwrw5wm

