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Abstract
This paper examines how constructionist learning principles can be maintained in an era of 
shortened attention spans and passive content consumption. While TikTok‘s own research 
shows that 50 % of users find videos over 60 seconds stressful, we demonstrate that meaning-
ful creative engagement remains possible through carefully designed learning progressions. 
Using data from STEAM Discovery Fairs, we analyze how students across different grade 
levels and genders engage with RULER.game, a Computational Thinking Tool enabling 
rapid creation of programmable video game characters. Our findings reveal that while over-
all engagement levels were high, boys and girls derived enjoyment from different aspects 
– girls primarily from design elements and boys from programming components. The study
demonstrates that by providing appropriate scaffolding and tools, students can quickly tran-
sition from passive consumers to active creators, even within perceived modern attention
constraints. These results suggest that constructionist principles remain viable when learn-
ing designs thoughtfully balance cognitive and affective challenges while accounting for
gender-specific preferences in creative computing activities.

Keywords and Phrases: computer science education research, block-based programming, 
programming by example.

1. Introduction
The foundational principles of constructionism emphasize children as active creators
of their learning experiences, particularly in mathematics and programming. How-
ever, today’s reality shows an increasing trend toward passive, consumption-oriented
technology use, even in educational settings. This shift away from creation is further
amplified by the evolution of information technologies – from the web to search en-
gines to generative AI – which increasingly think for us rather than serve as “objects
to think with” as Seymour Papert (Papert, 1980) originally envisioned.

The history of constructionist tools like Logo highlights this tension. In 1999, Papert 
himself acknowledged the need for evolution (Kahn, 2007), stating “I could not agree 
more with you about current Logo being out of date and am planning to immerse 
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myself in thinking about what a language for 2005 (or so) could be.” While many 
modern programming environments exist, they often fail to fully embrace contempo-
rary affordances that could support creative learning.

This challenge is particularly visible in the context of mobile devices. Allan Kay’s 
vision (Kay, 1972) of the Dynabook – a portable, collaborative computing device for 
children – has technically been achieved, yet these devices face increasing resistance 
in educational settings. Many schools and districts are moving to ban smartphones, 
raising questions about whether the challenges lie in the technology itself or in how 
society employs these tools.

The concept of “hard fun” (Papert, 1985) offers a framework for understanding this 
challenge, suggesting the need for a balance between cognitive and affective chal-
lenges through rewarding activities that connect with students’ interests. Howev-
er, current trends in social media, particularly platforms like TikTok, threaten this 
balance. Research shows that nearly 50 % of TikTok users find videos longer than 
60 seconds stressful (Stokel-Walker, 2022), with many watching content at double 
speed. This “TikTok generation” exemplifies a societal shift where sustained engage-
ment with challenging tasks is increasingly replaced by rapid-fire, algorithm-driven 
content consumption.

To explore how modern tools could bridge the gap between consumption and cre-
ation, we investigated approaches that could effectively support students’ transition 
from passive consumers to active producers with two research questions:

RQ1: How do engagement levels and understanding of programming differ 
across grade levels and between genders?

RQ2: What are the gender-specific preferences and prior experiences that might 
influence future programming participation?

Through STEAM (Science Technology Engineering Art and Math) Discovery Fairs, 
we tested how quickly students could transition from consumers to creators using the 
RULER.game Computational Thinking Tool. Students completed a creative cycle 
in just 15 minutes: drawing video game characters, digitizing them, and bringing 
them to life through basic programming. This compressed timeline demonstrated 
that meaningful engagement in computational thinking (Saqr et al., 2021) and crea-
tive production does not necessarily require lengthy introduction periods.

2. Related Work
Constructionist learning theories (Kafai et al., 1996; Papert et al., 1993) emphasize
that effective learning occurs through building meaningful artifacts, requiring pro-
gramming tools that provide key affordances to help learners overcome cognitive
challenges. Creating Logo, one of Papert’s goals was to make programming more
accessible by mitigating syntactic programming challenges. Block-based program-
ming introduced by AgentSheets (Repenning et al., 1996) and popularized with
Scratch (Resnick et al., 2009) completely eliminated syntax errors. However, block-
based programming environments like Scratch face several key challenges despite
their benefits in removing syntactic barriers. While they effectively prevent syntax
errors (Mouza et al., 2020) through their jigsaw puzzle-like interface (Glinert et al.,
1984) research reveals that students still encounter significant logical and semantic
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difficulties. Ben-Yaacov et al. (Ben-Yaacov et al., 2023) found that 39 % of student 
program executions resulted in errors related to issues like counting and orientation 
misconceptions rather than syntax. The debugging process is particularly challeng-
ing as many block-based environments provide limited debugging support (Hromk-
ovic et al., 2021) and may intentionally suppress error messages (Deiner et al., 2023). 
Additionally, block-based programming tools have been criticized for potentially 
leading to code smells and inefficient programming patterns, as demonstrated in 
studies of Scratch programs (Hermans et al., 2016). These challenges highlight that 
while block-based programming eliminates syntactic barriers, semantic and logical 
programming challenges likely outweigh syntactic ones.

Equally important to cognitive challenges are affective challenges (Picard et al., 
2004) in computational learning environments. Constructionist learning emphasizes 
building personally meaningful artifacts, but the nature of these artifacts and how 
tools and learning designs can scaffold their creation requires careful consideration. 
Instead of abstract computation like calculating prime numbers, programming can 
enable creative expression through diverse mediums: controlling robots, telling in-
teractive stories through environments like Alice (Kelleher et al., 2007), building 
scientific simulations with NetLogo (Wilensky et al., 2015), programming robots 
(Ajaykumar et al., 2021), designing games (Kafai, 1995; Overmars, 2004; Spieler 
et al., 2018), creating interactive E-textiles (Spieler et al., 2020), and programming 
toys (Janka, 2008). If the goal is to achieve Papert’s vision of “hard fun,” it becomes 
essential to scaffold what Dewey (Dewey, 1913) called “instrumental motivation” – 
where learners see clear connections between their efforts and meaningful outcomes.

However, even with strong initial motivation, providing low-threshold tools like 
block-based programming is insufficient if the tools and learning designs don’t fa-
cilitate a “gentle slope” progression from initial engagement to more sophisticated 
creation. Alan Perlis captured this challenge in his warning about the Turing tar-
pit (Perlis, 1982): “Beware of the Turing tar-pit in which everything is possible but 
nothing of interest is easy.” The journey from TikTok-style passive consumption to 
meaningful “hard fun” creation requires carefully designed learning progressions 
that balance both cognitive and affective challenges at each step. This progression 
must maintain engagement while gradually increasing complexity, allowing learners 
to build confidence and competence simultaneously.

3. Approach: Accessibility-to-Challenge Progression
To conceptualize a progression towards hard fun it is necessary to have a sense of 
space outlining the interaction between cognitive and affective challenges. This 
framework provides a lens through which we can analyze both grade-level pro-
gression in programming understanding and gender-specific engagement patterns, 
directly addressing our research questions about how different groups of students 
transition from consumers to creators. Figure 1 describes what we call the Accessibil-
ity-to-Challenge Progression (4a – 4b).

The framework builds on our Cognitive/Affective Challenges space (Repenning, 
2016), which emerged from research exploring challenges preventing learners from 
transitioning from “have to” to “want to” programming. This model is particularly 
relevant as we attempt to engage today’s students who, according to research by 
TikTok itself, find videos longer than 60 seconds stressful and often watch content 
at double speed (Stokel-Walker, 2022). These shortened attention spans make it even 
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more critical to understand how programming activities can be structured to over-
come both cognitive barriers (making programming accessible) and affective barriers 
(making programming exciting) simultaneously.

A key insight from exploring the Cognitive/Affective Challenges space is that moti-
vation and cognition in game design (Walter et al., 2007) are deeply interconnected. 
Even if students are initially motivated to create a game or simulation, if the tools 
are too complex, they’ll likely abandon the effort because the return on investment 
isn’t clear. Conversely, if programming is made too simplistic without meaningful 
creation possibilities, students may complete tasks but won’t develop the “hard fun” 
engagement that Papert described. The Accessibility-to-Challenge Progression rep-
resents a pathway for thoughtfully balancing these dimensions as students develop 
programming competency 

The Cognitive/Affective Challenges space can be illustrated through four character-
istic examples: (1) Writing C++ programs to compute prime numbers represents the 
classic “hard and boring” scenario – it poses significant cognitive challenges for nov-
ice programmers while offering minimal intrinsic motivation for most people except 
the already mathematically inclined. (2) Cleaning up a room exemplifies low cog-
nitive challenge but high tedium – its Sisyphean nature, where effort is quickly un-
done, makes it difficult to maintain intrinsic motivation. (3) Doom scrolling through 
TikTok represents the “easy and exciting” extreme – demonstrated by millions of 
users spending hours consuming short-form content, though such passive entertain-
ment typically offers limited developmental value. (4) The Accessibility-to-Challenge 
Progression is well illustrated by crossword puzzles, particularly the New York Times 
series that gradually increases in difficulty from Monday to Saturday, showing how 
cognitive challenge can increase while maintaining engagement through carefully 
calibrated progression.

Figure 1: Developing a Accessibility-to-Challenge Progression towards “hard fun”.



231

Alexander Repenning

While these examples illustrate the challenge space, they also suggest a pathway 
forward. The critical need is to help students transition from the passive consump-
tion habits of TikTok (3) to engaging in meaningful creative challenges (4) through 
carefully designed affordances that go beyond mere syntactic support. 

4. Tool: RULER.game
RULER.game (Figure 4, left) was developed as a Collaborative Computational 
Thinking Tool to facilitate the transition from consumers to producers by enabling 
students to create their own video games through what we call proxy-based program-
ming (Repenning et al., 2024). This approach affords pragmatic prebugging – proac-
tive debugging support that helps prevent logical errors before they occur. Compar-
ing to established error rates of block-based programming (Ben-Yaacov et al., 2023), 
our study shows that pragmatic prebugging results in error rates ten times lower than 
traditional block-based programming (Repenning et al., 2024). 

Following a long line of Computational Thinking tools (Repenning, 2017) including 
AgentSheets as the first block-based programming tool (Repenning et al., 1996), 
AgentCubes as a 3D Computational Thinking Tool adding pragmatic debugging 
support to block-based programming (Repenning, 2013a), RULER.game introduc-
es proxy-based programming to make programming more “accessible and exciting” 
(Repenning, 2013b). 

Recent research on programming languages supporting children’s programming has 
focused heavily on syntax while largely neglecting pragmatics. Pragmatic debugging 
programming support – approaches that scaffold understanding “what code means 
in specific situations” – can be found in foundational work exploring programming 
by example (Cypher, 1993; Lieberman, 2001; Repenning et al., 2001), and live pro-
gramming (McDirmid, 2007, 2013). In programming by example (Figure 2, bottom) 
a human changes a situation, e.g., by interacting with objects in a game, to have 
the computer change the code. Conversely, in live programming (Figure 2, top) the 
human changes code to have the computer update the situation. Without a proper 
mechanism to define a focus both programming paradigms can be difficult to con-
trol by the user (Ferdowsifard et al., 2020). Proxy-based programming, in contrast, 
employs the notion of a proxy object serving as Logo turtle-like embodiment through 
body syntonicity (Watt, 1998) helping users to focus and to understand causal con-
nections between code and situation. Combined, the human and the computer use 
this proxy in a sandbox to proactively explore future situations (Figure 2, middle). 
Imagine a student programming a game of Pac-Man. That student would select Pac-
Man in its current situation and start programming. The Pac-Man would be cloned 
into a visible proxy object looking like the a ghosted Pac-Man image. The student 
can now issue various actions to see possible future situations by observing the proxy 
execute these actions. Unlike with basic testing functions found in programing tools 
like Logo, AgentSheets, Scratch or AgentCubes, this experimentation takes place in 
a protected sandbox preventing unwanted side effect or the need to tediously snap 
code pieces apart for the sole purpose of testing. 

Proactive proxy-based programming will reveal programming errors the instance 
they are made. That is, users do not have to write and then execute a complete pro-
grams such as programs to solve a Hour of Code like challenge (Repenning et al., 
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2016) or the Kodetu challenges (Ben-Yaacov et al., 2023). Users can fix the error 
and RULER.game will replay the proxy actions to get ready for more corrected 
instructions.

Figure 2: 

code situation

Live Programming 
 human changes code   computer updates situation

Programming by Example 
 human changes situation   computer updates code

Proxy-Based Programming 
 +  human + computer use proxy in sandbox 

to proactively explore future situations

Proxy-Based Programming uses a embodied proxy in a sandbox to explore 
possible code and situation futures.

RULER.game helps overcome the Turing tar-pit (Perlis, 1982) through the integra-
tion of AI actions that make sophisticated behaviors accessible. With the RULER.
game AI actions even 1st graders (Repenning, 2024) were able to use sophisticated 
AI pathfinding (Repenning, 2006) to program ghosts to collaboratively pursue Pac-
Man through a maze. In other programming languages employed to make games, 
and aimed at kids, such as Scratch, this level of game AI would be essentially im-
possible, forcing programmers to resort to less compelling game mechanics such as 
ghosts moving toward Pac-Man while ignoring walls, or implementing random or 
scripted movement patterns. 

5. Intervention: Create Your Own Video Game
To explore the research questions we evaluated a compact learning design for 
STEAM Discovery Fairs having kids create the start of a simple video games in 
about 15-20 minutes:
1. 1st Table: draw your own video game character on paper (Figure 3, left)
2. 2nd Table: create RULER.game project on iPad (Figure 3, right)
3. scan in game background. Some background images were provided (Figure 3, 

right)
4. scan in own video game character
5. learn how to program simple rules to make character controllable through direc-

tional gamepad
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Figure 3:  Left: 1st Table: Draw your own character. Right: 2nd Table. Programming 
and play testing

It was not clear if a station focusing on programming would be sufficiently attractive 
to kids especially when surrounded by a vast array of activities constantly competing 
with their attention. The tunSolothurn.ch 2024 event offered 46 hands-on experi-
ments across 24 research stations, allowing over 8,000 children and youth to engage 
with STEM activities in creative and engaging ways. The diverse offerings included 
creating handmade cooling pads, programming robots, experimenting with virtual 
reality, assembling electronic pins, constructing bridges from popsicle sticks, build-
ing metal puzzles, and participating in “explosive” science shows.

The station, aided by 2-3 pre-service teacher students from the School of Education, 
FHNW Switzerland, was barely able to keep up with the barrage of kids eager to 
make their own video games. In the few moments where there was no line waiting 
to participate, kids were allowed to continue with programming to create additional 
characters, and to extend programming, e.g., with collision detection or score count-
ing. The minimal expectation was to have kids create a game with one character that 
they could move around the world (Figure 4). 

Figure 4: Left: RULER.game game with one character programmed.  
Right: Example characters drawn.

Many kids returned to the station trying to continue with programming. Some came 
back waiting for a multi-person opening to work on a game with their friends. Some 
kids returned on different days with teachers, parents or even grandparents. 

http://tunSolothurn.ch
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6. Evaluation
To evaluate the learning design we collected the games produced and asked students 
to fill out a short questionnaire. The “Create Your Own Game” station operated for 
3 days during which over 300 games were created. To provide some opportunity for 
students to continue with game design at home, or school, projects were uploaded to 
the RULER.game server. Students received a RULER.game flyer with information 
for parents and teachers including a printed QR code label providing a link to their 
current project. 

Before leaving the station N = 189 students filled out a short questionnaire with the 
following questions:
1. What grade are you in? (number)
2. What is your gender? (male/female)
3. Enjoyment: I enjoyed creating a game: strongly disagree: -2, disagree: -1, agree: 1, 

strongly agree: 2
4. Understanding: I understand how to program: strongly disagree: -2, disagree: -1, 

agree: 1, strongly agree: 2
5. Retention: I would like to continue programming: yes/no
6. where would you like to continue to program 
7. What kinds of games are you currently playing? (open)
8. What part of the activity did you like best? (open)
9. What part of the activity did you find difficult? (open)
10. Have you programmed before? yes/no
11. What did you program before? (open)

Exploring RQ1: “How do engagement levels and understanding of programming dif-
fer across grade levels and between genders?” We found a mild scissor effect (Figure 5) 
where engagement decreases while understanding increases (after grade 2). The cross-
over with enjoyment and the very high self-reported levels of understanding could 
be outliers due to the small sample size of students from grade 1 (5 girls and 3 boys). 

Figure 5: Scissor effect: enjoyment (Q3) decreases (left), while understanding (Q4) 
increases (right).
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Exploring RQ2: “What are the gender-specific preferences and prior experiences that 
might influence future programming participation?” We looked at retention, that is, 
the claimed interest to continue with programming in Figure 6 left. This retention 
suggested by the number of students wanting to continue to program is high but 
even larger for boys (88.9 % n = 135) compared to girls (67.4 % n = 46). 8 students did 
not identify gender. Interestingly, the percentage of girls in 6th grade reporting prior 
programming experience (60 %, Figure 6, right) is almost 3 times larger than the per-
centage of the boys with prior programming experience (23 %). 

Figure 6: Interest (Q5) in continuing to program (left) versus prior programming (Q10) 
experience (right).

Looking at more depth into gender specific preferences we found substantial differ-
ences in the most enjoyed aspects of the activity. As an open question students men-
tion a big array of reasons including “everything” but there were two coded clusters 
called “design” and “programming.” 

Figure 7: (Q 8) Girls enjoy design most (left), buys enjoy programming most (right).

Figure 7 shows a flip with two highly significant gender differences (design: p < 0.001, 
programming: p = 0.006) and very large effect sizes (Hill et al., 2008) between the 
two categories. Both “design” with an effect size (Cohen’s d) of 3.97 and “program-
ming” with an effect size of -3.14 demonstrate these pronounced differences. In sum-
mary, while game design activities are enjoyed by both genders comparably, their 
sources of enjoyment differ substantially.
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Limitations to the evaluation included the somewhat informal nature of the inter-
vention and that there was no control group and the length of intervention varied 
widely. Additionally, as a science fair setting, some students self-selected to partici-
pate in this activity among many competing options, potentially biasing our sample 
toward those already interested in programming or game design. The informal learn-
ing environment also made it difficult to control for prior knowledge and experience, 
though we attempted to account for this through our questionnaire. The high-energy 
atmosphere of the science fair, with 46 different hands-on experiments competing 
for attention, meant that some students may have rushed through the activity. While 
our pre-service teacher facilitators were trained on the activity, their varying levels 
of experience with the tool could have influenced outcomes. Finally, our reliance on 
self-reported data through the questionnaire, particularly for measures like under-
standing and enjoyment, may not fully capture actual learning outcomes.

7. Conclusions
Our findings challenge assumptions about the incompatibility between TikTok-era 
attention spans and constructionist learning. Through our STEAM Discovery Fair 
intervention, even first-grade students successfully created their own video games 
using the RULER.game Computational Thinking Tool in about 15 minutes. While 
the activity’s initial focus on drawing video game characters made it broadly ap-
proachable, our analysis revealed important engagement patterns across grade levels 
and genders. Overall enjoyment was high, but boys and girls derived satisfaction 
from different aspects – girls primarily valuing design elements and boys favoring 
programming components. The tool’s proxy-based programming approach made 
programming accessible while maintaining constructionist principles of personal cre-
ation. High retention rates and students returning for additional sessions suggest that 
with appropriate scaffolding and tools, active creation can successfully compete with 
passive consumption habits. These results demonstrate that constructionist learning 
principles remain viable when learning designs thoughtfully balance cognitive and 
affective challenges while accounting for diverse creative preferences. 
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