

Escaping the Turing Tar-Pit with AI Programming Blocks
Alexander Repenning

School of Education
PH FHNW

Windisch Switzerland
alexander.repenning@fhnw.ch

ABSTRACT
Game design is often considered a motivational approach to get
young children interested in programming and computational
thinking. However, while the idea of game programming may be
compelling from an educational point of view, creating games with
interesting interactions that are actually fun to play remains
challenging. Modern tools aimed at novice programmers should
empower their users to create games, such as Pac-Man, that
approach or even exceed the gameplay of 1980's arcade games. By
adding a high-level AI pathfinding block to the RULER.game tool,
13 students in grades 1-4 attempted to build Pac-Man-like games.
The findings suggest that all students were able to create Pac-Man-
like games with compelling gameplay interactions, including ghosts
finding the shortest path through complex mazes to Pac-Man,
multiple ghosts collaborating with each other, and sophisticated
game world topologies featuring toroidal portals.

CCS CONCEPTS
• Applied computing~Education~Interactive learning environments

KEYWORDS
Computer science education, artificial intelligence, computational
thinking, mobile programming tools, programming for children

ACM Reference format:

Alexander Repenning, 2024, Escaping the Turing Tar-Pit with AI
Programming Blocks, in Proceedings of the 19th WiPSCE Conference on
Primary and Secondary Computing Education Research (WiPSCE ’24), 2
pages. https://doi.org/10.1145/3677619.3677646

1 The Turing Tar-Pit
Especially in early K-12 grades computer science education often
prioritizes affective goals such as getting students excited about
programming, over cognitive goals such as learning important
principles of programming. In these contexts the creation of
personally interesting artifacts can play an important role. Provided
childrens’ nearly universal interest in video games, game
programming has been considered particularly low-hanging fruit.
But what if programming a game turns into a tedious coding
exercise producing a non-compelling game? There is the potential
danger that students’ initial negative perception of programming,
e.g. “programming is hard and boring” actually gets reaffirmed.

Alan Perlis introduced the Turing tar-pit [2]: “Beware of the Turing
tar-pit in which everything is possible but nothing of interest is
easy.” The Turing tar-pit describes potential tension between
cognitive and affective goals of game programming in schools. The
cognitive goal may be to learn computational thinking (CT) through
the process of designing and programming a game. The affective
goal may be to create an exciting game that game creators and their
friends may actually enjoy playing. Ideally, these goals are aligned.

Even simple 1980 arcade style games such as Pac-Man or Frogger
have some compelling gameplay characteristics that may be hard
or, practically speaking, impossible to program for programming
novices using tools such as Scratch. For instance, in a Pac-Man game
even young students expect ghosts to exhibit intelligent pathfinding
behavior and not just random movement. Using tools such as
Scratch students are likely to fall into the Turing tar-pit producing
complex code without actually creating a compelling game.

This research employs a Pac-Man-like game as a benchmark to
explore cognitive and affective challenges. First the article
illustrates how a group of 13 students, grades 1 - 4, are programming
a “compelling” Pac-Man game using AI programming blocks added
to the RULER.game computational thinking tool. Then, the article
tries to deconstruct the necessary combination of abstractions and
affordances to escape the Turing tar-pit.

2 Falling into the Turing Tar-Pit
13 students from 1st to 4th grade used RULER.game [3], a highly
accessible computational thinking tool aimed at young children
with limited reading skills, to design and program a Pac-Man game
in 90 minutes. RULER.game works on mobile devices (Figure 1).

Figure 1: Left: World designed. Right: iPad showing code

Game design started with a class discussion of the Pac-Man game
breaking down the Pac-Man world into five basic shapes: Pac-Man,
ghost, wall, floor and point. Based on these shapes students designed
their own levels (e.g., Figure 1). Designs varied widely. The level of
complexity of these levels, that is the number of rows and columns,
or the inclusion of portals (vertical or horizontal world wrap around
points) was somewhat correlated to the age of the students. Some of
the 1st graders designed simple 4 x 7 worlds.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author. WiPSCE '24, September 16–
18, 2024, Munich, Germany, © 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-1005-6/24/09. https://doi.org/10.1145/3677619.3677646

Programming started with Pac-Man. RULER.game has a
up/down/left/right directional pad (D-pad). One approach to control
Pac-Man with the D-pad is to write four rules of this flavor: IF key
is pressed THEN Pac-Man rotates according to the direction and
moves one step in that direction. Students pointed out that it would
make more sense if Pac-Man would keep moving in the direction
that it is heading. Incidentally, this is also how the original game
works. This approach requires four rules rotating Pac-Man and a
fifth rule (green highlight in Figure. 1, right): IF Pac-Man sees the
black floor ahead of itself THEN Pac-Man advances forward.
RULER.game offers absolute grid references (called Bird View) as
well as relative grid references (called Turtle View).

Now the Turing tar-pit was entered. Random movement of ghosts
was not considered compelling game play. A first version of the
ghosts was programmed adding a single rule moving randomly on
top of the floor. It became clear that the ghosts have no real
understanding of how to move towards Pac-Man in a complex maze.
As anticipated, students quickly complained “but my ghosts are not
smart at all, they should be trying to catch Pac-Man.” The initial
interest built up by the exciting prospect of creating one's own game
was suddenly replaced by frustration.

3 Escaping the Turing Tar-Pit
A discussion exploring more compelling options revealed how a
mouse would be able to find cheese inside a maze without being able
to see the cheese. The formal notion of hill climbing [4] was
approximated by the students suggesting that the mouse would head
in the direction where the smell of cheese is most intense.

In order to escape the Turing tar-pit in RULER.game it was
necessary to introduce new abstractions based on important
affordances. The moveRandom action was replaced by the
advanceTowardsTarget artificial intelligence (AI) block
implementing Collaborative Diffusion [4]. For single agent search,
Collaborative Diffusion works similarly to an A* algorithm to find
the shortest path in a graph representing the maze. However, unlike
A* Collaborative Diffusion also works for the much more complex
multi-agent pathfinding. For instance, if there are n ghosts having
n paths to Pac-Man they would split up optimally. That is, they
would actually collaborate, leaving the Pac-Man no exit route.

Figure 2: AI block (left, bottom) and visualization of smell

Figure 2 illustrates Proxy-Based Programming [3] in RULER.game.
The user selects a ghost to enter a programming sandbox. A proxy
object is created. After picking the advanceTowardsTarget action
(parameter 1: on, parameter2: towards), the ghost proxy is animated
to move to the left indicating what that action would do. In addition,
the smell of the Pac-Man, i.e., Collaborative Diffusion value is
visualized making it clear this ghost would move left. This may be
somewhat surprising as the shortest path is through the
South/North portal and not to the right to later head up.

The students quickly realized that the AI is “too” smart, making the
game frustratingly challenging. Ghosts would find a way, sneaking
sometimes surprisingly through the portals, to quickly circle Pac-
Man. Fortunately, it is much simpler to dumb down a great AI than
to smarten up a bad one. The students had to be shown the
setPlaybackSpeed action making it possible to slow down the ghosts
and to speed up the Pac-Man to the point where the game became
playable and indeed highly compelling.

4 Affordances enable Abstractions
Analysis of numerous Pac-Man projects in Scratch/Scratch Jr.
revealed a lack of compelling pathfinding AI. Most used predictable
scripted or random movement. Attempts at pathfinding failed for all
but the most trivial mazes. These projects typically had large code
bases without working single or multi-agent pathfinding, and often
exhibited common Scratch code smells [1] such as redundancies.

If a high-level of abstraction AI pathfinding block can be easily
added to RULER.game why would adding a comparable block to
Scratch be much harder or perhaps even impossible? A short answer
is difficult to formulate. However, the key is that high-level
abstractions necessary to enable novice programmers to exit the
Turing tar-pit depend on specific affordances. In Scratch the
addition of these affordances would probably require fundamental
architectural changes:

• Grid: Enables topological parsing and automatic pathfinding
working even in toroidal worlds including portals. Grid-aware
blocks enable expressing complex behaviors.

• Class-Instance Object Models: Reduce redundancy and
simplify code management for frequently used objects like
floors, walls, and points.

5 Conclusions
Students as young as 1st grade were able to use a high-level of
abstraction AI pathfinding block to create a compelling Pac-Man-
like game with the RULER.game computational thinking tool.

REFERENCES
[1] Hermans, F. and E. Aivaloglou, "Do code smells hamper novice programming?

A controlled experiment on Scratch programs," in 2016 IEEE 24th International
Conference on Program Comprehension (ICPC), 2016.

[2] Perlis, A. J., "Special feature: Epigrams on programming," ACM Sigplan Notices,
vol. 17, pp. 7-13, 1982.

[3] Repenning, A. and A. Basawapatna, "RULER: Prebugging with Proxy-Based
Programming," in Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing, Liverpool, UK, 2024

[4] Repenning, A., "Excuse me, I need better AI!: employing collaborative diffusion
to make game AI child's play," in Proceedings of the ACM SIGGRAPH
symposium on Videogames, Boston, Massachusetts, 2006, 169-178.

