

RULER: Prebugging with Proxy-Based Programming
Alexander Repenning
School of Education
FHNW Switzerland

Brugg-Windisch, Switzerland
alexander.repenning@fhnw.ch

Ashok Basawapatna
Mathematics, Computer & Information Science

SUNY Old Westbury
Old Westbury, Long Island, New York, USA

basawapatnaa@oldwestbury.edu

Abstract—While block-based programming has
successfully eliminated critical syntactic barriers to
programming, it remains unclear how effectively it aids in
overcoming semantic, logical, and pragmatic programming
challenges that hinder computational thinking. These
challenges are likely to far outweigh the syntactic ones.
With the goal of creating a highly accessible programming
tool for young students using mobile devices, we explored
the concept of pragmatic prebugging to begin addressing
these challenges. By pragmatic prebugging, we refer to
proactive debugging tools designed to prevent logical
errors. This article introduces RULER.game as a
Computational Thinking Tool with built-in pragmatic
prebugging, enabling novice programmers to create games
through a paradigm we call proxy-based programming. A
small study exploring error rates found statistically
significant performance improvements of proxy-based
programming compared to block-based programming.

Keywords–block-based programming, computational
thinking, programming by example, mobile computing.

I. INTRODUCTION
While block-based programming has removed critical

syntactic barriers from programming, it is not clear how much
it has contributed towards making computational thinking (CT)
truly accessible [61]. If the goal is to teach computational
thinking by creating personally interesting artifacts such as
games [29], robots [1, 55] and simulations [40], then how many
of the overall problem solving challenges are fully addressed by
syntactic support mechanisms? Block-based programming is
often compared to the ease of use of LEGO (e.g., [38]).
However, if a person understands how to snap together two
LEGO pieces, and then decides to build a replica of the Taj
Mahal, they might soon realize that this “skill” does not
automatically scale into the competence to create sophisticated
artifacts. Benefits of block-based programming are claimed to
include being “intuitive and self-explanatory” [72]. Many
block-based programming designs intentionally suppress error
messages [24] or provide limited debugging support [10]. This
can produce programming errors [4] resulting from logical and
pragmatic programming challenges. Most importantly, these
kinds of challenges are likely to outweigh the syntactic ones.

Not only are non-syntactic problem solving challenges vast
in magnitude, but research also does not have a full
understanding of what the precise nature of these challenges
really are. Early on, Knuth in his seminal analysis of the root
problems of programming bugs uncovered nine problem-
independent categories [31]. Only one of these categories is
connected to syntax. This early research did not focus on novice

programmers, however, it becomes clear that even if syntactic
challenges are completely removed by block-based
programming the remaining challenges are critical and need to
be addressed for advanced and novice programmers alike. More
recently Ben-Yaacov et al. explored the types of errors kids
make when using block-based programming languages [4].
They observed many logical bugs, not connected to syntax,
when students programmed simple microworlds [42, 45].

Enabling students to create interesting projects [53] is not
limited to the acquisition of programming skills but also
requires debugging skills including the mastery of debugging
tools [34]. The notion of “prebugging” [48, 69] refers to
debugging approaches proactively preventing bugs.
Debugging, in contrast, is reactive and generally considered “an
activity that comes after testing” where one finds out where the
error exists and how to fix it [34]. The proactive nature of
prebugging may be particularly relevant to novice
programmers engaging in ineffective debugging strategies such
as trial-and-error [36]. Eisenstadt [12] points out that
debugging becomes particularly difficult when there is a large
temporal as well as spatial chasm between the root cause and
the symptom. Block-based programming could be considered
syntactic prebugging, crossing the syntactic challenges part of
the Eisenstadt chasm by proactively preventing syntactic errors.
But how can programming environments for children address
the more complex aspects of the Eisenstadt chasm dealing with
bugs emerging from logic, and pragmatic misconceptions?

Our research explores pragmatic prebugging as meta-
design [13] philosophy to make programming more accessible
and less error prone to novice programmers. In the field of
linguistics “pragmatics” refers to the understanding of what
words mean in the context of specific situations [60]. In
computer science we conceptualize pragmatic prebugging as
the proactive support of programmers to understand what
programming instructions mean in the context of specific
situations. By situation we mean the state an object is in,
including its attributes, and its surrounding microworld.

RULER.game is a new tool implementing pragmatic
prebugging through, what we call, proxy-based programming
(PBP). Proxy-based programming introduces a number of
programming affordances [51] not found in typical block-based
programming. Most notably, there is the notion of a proxy
object helping programmers to overcome the Eisenstadt chasm
by proactively visualizing the consequence of programming
decisions by unifying, typically separate [34], programming
and debugging interfaces. The research question of this paper
explores the error prevention efficacy of PBP: What is the
efficacy regarding the prevention of non-syntactic errors
provided by proxy-based programming?

II. RELATED WORK
Proxy-Based Programming (PBP) offers pragmatic

programming support similar to programming by
demonstration [7, 22] and programming by example [33]. In
these demonstrational programming environments, users
directly manipulate a situation through a microworld [45].
Demonstrational programming environments such as graphical
rewrite rules (e.g., [65]) interpret changes of the situation by the
user to generate a program as a collection of rules. For instance,
the behavior of a digger (Figure 2) could be demonstrated by
direct manipulation [26, 63] making the user rotate and move
the digger on the road. A ubiquitous challenge [7, 18, 33] to
demonstrational programming is finding the right level of
abstraction. Automatically generated behavior may either be
too specific, factoring in irrelevant details of a concrete
situation, or, vice versa, may be too generic resulting in
unwanted overgeneralizations. Some demonstrational
programming environments mitigate the abstraction challenge
somewhat by making the program visible and editable by users.
Proxy-based programming flips the “change the situation” then
“adjust the level of abstraction” process around. First users
select from a set of conditions holding true in the current
situation, and then they select contextualized actions to witness
these actions performed in a sandbox by a proxy object.

 When looking at proxy-based programming we must pay
special attention to how we can better enable tool accessibility,
program implementation, execution, and debugging. Live
Programming, and mobile tools help develop the four design
principles that the RULER.game adheres to (described in
section III). Live Programming provides programmers
immediate visual feedback about the behavior of their programs
that helps to understand the cause-effect relationship in their
code – an influential aspect for novices learning programming
[68]. As reported by McDirmid [35], Live Programming
environments enable real-time interaction with programming
systems that can significantly improve productivity and make
the activity of programming more engaging. However, Huang
points out that Live Programming poses an “unavoidable risk”
of overwhelming information overload [25]. Proxy-based
programming mitigates information overload by focusing the
user attention on a single object (the proxy, e.g., Figure 2, right)
and only the limited scope of code being currently edited (a
single rule).

Programming and debugging is particularly challenging on
small mobile devices (see principle #3). There are a number of
tools to create programs running on mobile devices such as
smartphones and tablets. Some, such as MIT App Inventor [46],
Thunkable [21], and AppyBuilder [70], are desktop-based. That
is, programming takes place on desktop-based computers
producing apps or project files which then need to be copied to
smartphones. Tools more similar to RULER.game directly
enable programming on smartphones using text- or block-based
programming. Text-Based Programming environments for
smartphones, aimed typically at high-school and undergraduate
students, include Lua and Processing. Boateng [5] points out
the ubiquity of smartphones in Africa as the main reason to
select smartphones as an educational platform. He reported that
by 2021 there would be nearly one billion smartphone users in

Africa. Furthermore, he also found that the use of smartphones
for text-based programming of games was not a hindrance [5].

Block-based programming environments can be
categorized into closed-project tools, such as LightBot [17]
focusing on Hour of Code like puzzles [73], or open-project
tools, such as Hopscotch [74], Pocket Code [64] and Scratch Jr.
[72], helping users to create their own projects including the
creation of their own characters by drawing them using image
editors or using camera functions of smartphones. Most of the
closed-project puzzle environments, but also Scratch Jr, show
the code and the situation simultaneously. In contrast,
Hopscotch and Pocket Code do not support the simultaneous
view of code and situation. Scratch Jr. appears to have a lower
threshold [43] than Hopscotch and Pocket Code.

While the history of debugging can be traced further back
to the 1940s when relay-based computing devices were invaded
by moths and “debugged” by Admiral Grace Hopper, the
modern science of debugging [69] in the context of block-based
programming starts as early as block-based programming itself.
Glinert [16] proposed the idea of programming constructs
represented as jigsaw puzzle pieces that could be snapped
together. This could be considered syntactic prebugging
proactively preventing the creation of syntactically incorrect
programs. Debugging hinges on the knowledge and strategies
that are necessary for successful debugging [34] including the
ability to employ debuggers [59]. Most block-based
programming languages provide little debugging support [10]
and may intentionally suppress error messages [24]. Some
block-based programming tools including Scratch [10], Scratch
jr. [72], and Snap! [41], provide basic affordances to test
programming blocks. Importantly, these debugging aids are not
part of normal programming process. AgentSheets and
AgentCubes feature additional static as well as dynamic code
analysis tools [48] aiding the debugging process more
proactively. Static code analysis [27] visualizes semantic
problems such as unreachable code. Dynamic code analysis in
AgentCubes [48] visualizes logical problems by showing how
the control flow depends on the current situation. Proxy-based
programming provides the notion of a proxy object, enabling
safe tinkering and programming in a sandbox to overcome
syntactic, semantic and pragmatic language challenges.

Finally, if CT education in schools is less about entering a
professional computer science career pipeline and more about
connecting CT to other K-12 subjects then it may make sense,
just as suggested by Johnson [28], to raise programming to
higher levels of abstractions. Tools such as Microsoft’s
TileCode [2] and Thymio with its VPL programming language
[39] employ higher level abstraction programming models that
evolved from the concept of graphical rewrite rules [65]. With
TileCode a simple Pac-Man game can be created with just a
handful of rules edited on a tiny 160 x 120 pixel display.
Similarly, RULER.game also features a rule-based
programming approach [3, 8, 14, 15, 19, 47, 54] and makes it
possible to write highly compact code, e.g., a 9 rule Pac-Man
game including multi-agent path finding AI blocks [49],
avoiding frequent code smells found in lower-level block-based
programming languages such as Scratch [20].

III. PRINCIPLES OF PROXY-BASED PROGRAMMING
Proxy-based programming (PBP) is a new programming

paradigm embodied in the RULER.game computational
thinking tool [52, 56]. PBP can be considered an example
implementation of the pragmatic programming philosophy. The
goal of PBP is to make programming more accessible by
establishing a highly transparent connection between the
situation embodied in a microworld [42, 45] and the program
currently being constructed by a programmer. Eisenstadt [12]
urges to address this connection stating “More than 50% of the
[programming] difficulties are attributable to just two sources:
large temporal or spatial chasms between the root cause and the
symptom, and bugs that rendered debugging tools
inapplicable.” We define proxy-based programming through
four design principles:

1. The impact of each programming step should be
proactively and visibly reflected through an object called
the proxy contextualized in the current situation, while
avoiding unwanted side effects. The proxy is a
recognizable copy of the object to be programmed, created
when the user starts a programming cycle (e.g., Figure 2).
The microworld (or situation) should be annotated in ways
that enhance the perception of causality [37] by
demonstrating the concrete consequences of executing
instructions by the proxy. To prevent unwanted side
effects, such as losing an object by accidentally deleting it,
the microworld, including object attributes such as size,
color, and rotation, is sandboxed. After the user concludes
the programming cycle, the proxy's code is transferred into
the original object to be programmed. The proxy is then
removed, and in case of side effects, the microworld is
automatically restored.

2. The situation should guide the programming
environment. Instruction palettes should be
demonstrational to reflect the current situation. Conditions
found in a demonstrational condition palette should be
situated, if possible, to reflect true facts. For instance, a
condition querying the object ahead of the proxy should
default to the actual object found in the current situation
while the user is programming the proxy.

3. Program and Microworld should be visible at the same
time. Mobile devices, with their small screens, tempt
programming language designers to create interfaces that
introduce problematic temporal or spatial chasms [12],
separating the program and microworld into views that
users must explicitly switch between. Instead, a
programming interface should simultaneously display the
program and code, with a focus on the relevant parts
involved in a causal connection.

4. A proactive programming interface should unify code
manipulation and debugging interfaces. The
programming environment should not have to consist of
different interfaces for implementation and run-time
activities [34]. Users should not need to explicitly ask to
enter a debugging tool or mode. While many block-based
programming tools include some form of testing blocks
there is little evidence that programmers use these
mechanisms. With PBP users do not have to take the
initiative to invoke testing functions.

IV. PREBUGGING WITH PROXY-BASED PROGRAMMING
While our ultimate goal is to teach computational thinking
employing learning designs [32] based on constructionists
principles [43, 44], we find it useful to start with basic coding
puzzles [53]. The Kodetu computational thinking challenges
have been carefully designed and evaluated as progressive set
of puzzles aimed at early programmers [4, 11]. Figure 1 shows
the RULER.game Home screen including versions of the
Kodetu challenges. The Kodetu challenges will be described
more in-depth in section V.

Fig. 1. The RULER.game Home Screen provides a Netflix-like Menu of
Programming Tutorials including Kodetu Challenges.

A 2nd grade student, let's call her Alicia, has already
advanced to the digger challenge 6. RULER.game opens a
tutorial explaining that Alicia should program the digger by
defining an IF/THEN rule. For the THEN part of the rule, Alicia
is instructed to use only the forward , turnLeft and
turnRight actions (Figure 2, right). These actions are
inspired by the turtle commands [43] found in the Logo
programming language [23, 30]. Similar actions can also be
found in the controls of remote control cars or the 4 buttons of
programming toys for kindergarteners such as the Bee-Bot
[62]. Alicia taps the digger in the world to show its behavior
consisting of an empty IF/THEN rule (Figure 2, left).

Fig. 2. Left: Tap digger to show code. Right: tap “then” part to create proxy
(ghosted digger copy) and show action palette including turtle move actions.

Following the tutorial, she then taps into the THEN box to
open the demonstrational action palette. This is when Alicia
enters the proxy programming sandbox. A proxy object (Figure
2, right) is created by copying the digger. Alicia can now tinker
[57] with the proxy by tapping actions in the palette without
risking unwanted side effects. For instance, using the erase
action will only erase the proxy while preserving the state of the
original digger. Before world destructive actions are executed,
the world is backed up so that it can be restored.

Alicia needs to first fully understand that the forward ,
turnLeft and turnRight actions operate from the
perspective of the digger driver. For instance, selecting the
forward action in Figure 2, right, would make the digger drive
to the right. The purpose of the proxy is to aid imagination
through body syntonicity [71], i.e., the idea of becoming the
object one wants to program. Alicia quickly taps the turnRight
and then the forward action to make the digger move into the
corner. To better understand what each action does, perhaps
Alicia cannot read yet, Alicia can enable spoken explanations
to receive detailed descriptions. Additionally, while executing
and moving the proxy, the action will be annotated with a short
explanation tag (e.g. Figure 3 left).

Fig. 3. Left: make proxy turn right, move forward. Middle: after adding D-pad
condition. Right: play the game. D-pad shows which keys are programmed.

It is in this situation where she hesitates for a moment
because she is not sure if the digger needs to turn left or right.
From a bird's eye point of view the digger needs to move to the
right. However, from the first person perspective, because the
digger is facing down, it needs to turn left. In our usability study
we found this stage to be challenging to many of the 10 year old
kids. Often we would notice that kids would not only hesitate
but also engage in body syntonic behavior such as turning their
head, or the tablet, ever so slightly to better understand which
way to turn. Alice correctly selects the turnLeft action and
finishes the action sequence. She taps into the IF part of the rule
to trigger the rule with a directional pad (D-pad) key (Figure 3,
middle).

Pressing the play button Alicia can now run the complete
program. The D-pad indicates that its right button has been
programmed (Figure 3, right). After Alicia presses that button
the digger successfully drives to the construction site.

Kwame, in 5th grade, has finished the Kodetu challenges and
is ready for a more challenging project. He picks the “Maze
Solver” project. Unlike with Hour of Code like puzzles, the goal
is not to code one specific sequence of instructions to deal with

one specific maze but to become a more advanced
computational thinker implementing a universal algorithm
applicable to an infinite universe of mazes. The tutorial hints at
the so-called “right hand rules” maze-solving algorithm.

Fig. 4. Progressive Proxy-Based Programming. Left: rule #1 if empty right
then turn right and move forward Middle: rule #2 else if empty ahead then
move forward Right: else turn left

Engaging in progressive proxy-based programming,
Kwame fluidly interweaves coding and prebugging to
gradually program the right hand rules. Rule #1 is about turning
right and advancing one step if the space to your right is empty
(Figure 4, left). Kwame runs this rule but the digger is not
getting far. Rule #2 is about going straight: If it is empty ahead
of you then move forward (Figure 4, middle). These two rules
make the digger advance all the way to a cul-de-sac (Figure 4,
right). He codes rule #3 to rotate left twice (180 degrees) until
Safiya, sitting next to him, points out a more elegant solution
with just a single rotate left (Figure 4, right).

The demonstrational condition palettes, mentioned in PBP
principle #2, help with the creation of algorithms. When the
digger gets stuck in the maze in a particular situation, the
demonstrational palettes offer true conditions reflecting the
situation. These conditions become likely candidates to
predicate pertinent control flow. When looking at the finished
rules Kwame can differentiate true or false conditions by their
color and recognize the control flow by the pertinent path subtly
glowing green (Figure 4).

V. EXPERIMENTAL METHODS
To assess the error prevention efficacy of proxy-based

programming we employed documented error rates of
established block-based programming challenges as baseline
data. The Kodetu challenges [11] employed in the example
above have been analyzed by Ben-Yaacov et al. to categorize
the types and frequencies of non-syntactic errors novice
programmers make when using block-based programming [4].
We used these data as an empirical baseline to run an initial
comparative study pilot. While the age group (10 – 12 year old
elementary school children) as well as the duration of the
interventions match, the sample sizes are different. The Ben-
Yaacov study (n=123) is larger than our pilot sample size: 8
users, aged 10-12, with little if any programming experience
(n=8, 4 males, 4 females).

Ben-Yaacov et al. defined errors as the event when
executing the finished program resulted in a situation where the
agent did not successfully reach the goal [4]. The 123

participants executed their programs a total of 2679 times
across all challenges. Of these executions, 1033 (39%) resulted
in errors. The study categorized logical errors as one of the
following: Counting, Orientation, Redundancy, Conditionals,
Repetition, Premature, and Decomposition. Due to the simple
nature of exercises 1-6, the main errors encountered in the
original and the comparative study were Counting and
Orientation and so we will focus on these. Both Counting and
Orientation can be traced back to a well-established body of
literature. Counting is a classic example of a boundary, i.e. a
“off-by-one” bug [66]. Orientation errors are geometrical
misconceptions that can either be traced back to the lack of
preprogramming knowledge identified by Bonar and Soloway
[6] or the inability to correctly put themselves into the
perspective of the object to be programmed (syntonicity [71].)

VI. RESULTS AND DISCUSSION
All students in our study noticed every error in their code,

through all the exercises, using proxy-based programming. The
authors of the original Kodetu study [4] provided us with
additional data necessary to calculate statistical relevance for
challenges 1-6. Table I compares block-based programming
(syntactic prebugging) with proxy-based programming
(pragmatic prebugging) rates for orientation and counting
errors. Both error reductions, regarding orientation as well as
counting, were statistically significant (p < 0.05). The total
reduction of errors was a factor of 10.

TABLE I. SYNTACTIC AND PRAGMATIC PREBUGGING ERROR RATES

 Errors

Prebugging orientation counting total

Syntactic: Block-Based Programming 9.71% 13.37% 20.79%

Pragmatic: Proxy-Based Programming 0.00% 2.08% 2.08%

Provided the pronounced error reduction efficacy one needs
to ask if proxy-based programming can be considered an
effective educational scaffold [67] or should be considered just
an crutch [9]? A teacher amazed about how quickly kids were
flying through the Kodetu challenges wondered if maybe
RULER.game had made these Hour of Code like puzzles too
easy. On the one hand, the error reduction resulting from the
immediate assistance of proxy-based programming is indicative
of an effective affordance [51] to make programming more
accessible. On the other hand, however, Roberson et al. [58]
conjectured that approaches relying on immediate style
interruptions, such as providing the kinds of clues offered by
proxy-based programming, could result in an over-reliance on
shallow problem-solving strategies. Further research needs to
explore the trade-offs between temporary relief versus lasting
skills. In other words, we do not really understand the longer
term educational effects of proxy-based programming. If
proxy-based programming acts like a scaffold with educational
benefits then it should be possible to later fade the support of
this scaffold with only small negative effects. If, however,
proxy-based programming acts like a crutch, then the students’
performance would drop instantly to levels comparable in the
Kodetu [4] study when the pragmatic programming support
gets removed. Research could explore these more longitudinal
learning effects of proxy-based programming through A/B
testing contrasting options of RULER.game with and without
fading of pragmatic prebugging.

Can proxy-based programming result in code smells [20]?
We observed a number of students making orientation
mistakes, realizing it instantly but then not fixing it cleanly. For
instance, if the digger was programmed, by mistake, to turn left,
then some students did not remove that false instruction but
simply compensated the “bad” code with additional “good”
code. That is, they would either continue turning, 3 times
turning left is the same as 1 time turning right, or they would
add 2 times turning the other way. In either case, according to
the Kodetu challenge, this would not be considered an error.
However, these programs include unwanted redundancy. This
kind of behavior could either be blamed on tool affordance or
on the lack of details provided in the description of the Kodetu
challenges which did not explicitly ask for the most compact
programming solution. Researchers are encouraged to explore
these kinds of questions by using and extending the
RULER.game software.

The goal of RULER.game, however, is not to create the
ultimate Hour of Code like puzzle solving tool but to explore
fundamental affordances [51] enabling novice programmers to
create their own games. Affordances need to be combined with
strategies to scaffold creative programming project [53]. 5th
graders employed multi touch affordances, enabled on mobile
devices, to build two player Whack-a-Mole games. Classes
consisting of 1st - 4th graders drew their own game characters
on paper, scanned them into RULER.game, designed mazes
and programmed these characters. Another class with 1st - 4th
graders used a new Artificial Intelligence block [49] to
implement highly sophisticated pathfinding based on
Collaborative Diffusion [50]. While most of these young
students did not fully understand how the AI worked they did
enjoy the resulting gameplay. In fact, with the ability for ghosts
to track down Pac-Man optimally even through the most
complex mazes, including portals, and the ghosts collaborating
with each other, students quickly were quite busy dumbing
down the ghosts AI by making ghosts move much slower to
give the human player a fighting chance to win against the AI.

CONCLUSIONS
Proxy-based programming represents a significant

evolution of block-based programming. It supports novice
programmers not only in overcoming syntactic challenges but
also in prevailing over the much more daunting semantic,
logical, and pragmatic programming challenges. RULER.game
offers pragmatic prebugging; that is, it affords proactive
debugging support beyond syntax by employing a sandboxed
proxy object that illustrates the concrete consequences of
executing code in specific situations. A pilot study, which
employed Kodetu programming challenges, compared error
performance between block-based programming and proxy-
based programming. The study found that the error rates of
proxy-based programming were 10 times smaller and that the
reduction of error rates in all categories explored was
statistically significant.

ACKNOWLEDGEMENT

This work is supported by the Hasler Foundation. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of the foundation.

REFERENCES
[1] Ajaykumar, G., M. Steele, and C.-M. Huang, "A survey on end-

user robot programming," ACM Computing Surveys (CSUR),
vol. 54, pp. 1-36, 2021.

[2] Ball, T., S. Kao, R. Knoll, and D. Zuniga, "TileCode: Creation
of Video Games on Gaming Handhelds," in Proceedings of the
33rd Annual ACM Symposium on User Interface Software and
Technology, 2020, pp. 1182-1193.

[3] Bell, B. and C. Lewis, "ChemTrains: A Language for Creating
Behaving Pictures," in 1993 IEEE Workshop on Visual
Languages, Bergen, Norway, 1993, pp. 188-195.

[4] Ben-Yaacov, A. and A. Hershkovitz, "Types of Errors in Block
Programming: Driven by Learner, Learning Environment,"
Journal of Educational Computing Research, vol. 61, pp. 178-
207, 2023.

[5] Boateng, G., V. W.-A. Kumbol, and P. S. Annor, "Keep Calm
and Code on Your Phone: A Pilot of SuaCode, an Online
Smartphone-Based Coding Course," in Proceedings of the 8th
Computer Science Education Research Conference, 2019, pp. 9-
14.

[6] Bonar, J. and E. Soloway, "Preprogramming knowledge: A
major source of misconceptions in novice programmers," in
Studying the novice programmer, ed: Psychology Press, 2013,
pp. 325-353.

[7] Cypher, A., Watch What I Do: Programming by Demonstration.
Cambridge, MA: MIT Press, 1993.

[8] Cypher, A. and D. C. Smith, "KidSim: End User Programming
of Simulations," in Proceedings of the 1995 Conference of
Human Factors in Computing Systems, Denver, CO, 1995, pp.
351-358.

[9] Daniel, S. M., M. Martin‐Beltrán, M. M. Peercy, and R.
Silverman, "Moving beyond yes or no: Shifting from over‐
scaffolding to contingent scaffolding in literacy instruction with
emergent bilingual students," TESOL Journal, vol. 7, pp. 393-
420, 2016.

[10] Deiner, A. and G. Fraser, "NuzzleBug: Debugging block-based
programs in scratch," arXiv preprint arXiv:2309.14465, 2023.

[11] Eguiluz, A., M. Guenaga, P. Garaizar, and C. Olivares-
Rodriguez, "Exploring the progression of early programmers in
a set of computational thinking challenges via clickstream
analysis," IEEE Transactions on Emerging Topics in
Computing, vol. 8, pp. 256-261, 2017.

[12] Eisenstadt, M., "My hairiest bug war stories," Communications
of the ACM, vol. 40, pp. 30-37, 1997.

[13] Fischer, G. and E. Giaccardi, "Meta-Design: A Framework for
the Future of End User Development," in End User
Development, H. Lieberman, F. Paternò, and V. Wulf, Eds., ed
Dordrecht, The Netherlands: Academic Publishers, 2006, pp.
427-457.

[14] Fisher, G. L. and D. E. Busse, "Adding Rule-Based Reasoning
to a Demonstrational Interface Builder," in Proceedings of the
ACM Symposium on User Interface Software and Technology,
Monterey, CA, 1992, pp. 89-97.

[15] Gindling, J., A. Ioannidou, J. Loh, O. Lokkebo, and A.
Repenning, "LEGOsheets: A Rule-Based Programming,
Simulation and Manipulation Environment for the LEGO
Programmable Brick," presented at the Proceeding of Visual
Languages, Darmstadt, Germany, 1995, 172-179.

[16] Glinert, E. P., "Towards "Second Generation" Interactive,
Graphical Programming Environments," in IEEE Computer
Society, Workshop on Visual Languages, Dallas, 1986, pp. 61-
70.

[17] Gouws, L. A., K. Bradshaw, and P. Wentworth, "Computational
thinking in educational activities: an evaluation of the
educational game light-bot," in Proceedings of the 18th ACM
conference on Innovation and technology in computer science
education, 2013, pp. 10-15.

[18] Halbert, D. C., "Programming by Example," Xerox Office
Systems Division, Technical Report OSD-T8402 1984.

[19] Hayes-Roth, F., "Rule-Based Systems," Communications of the
ACM, vol. 28, pp. 921-932, 1985.

[20] Hermans, F. and E. Aivaloglou, "Do code smells hamper novice
programming? A controlled experiment on Scratch programs,"
in 2016 IEEE 24th International Conference on Program
Comprehension (ICPC), 2016, pp. 1-10.

[21] Hiasa, F., S. Supadi, E. Agustina, M. Afrodita, L. Lazfihma, and
N. Yanti, "Development of android-based learning media
assisted by Thunkable Applications in literary history courses,"
BAHASTRA, vol. 43, pp. 221-233, 2023.

[22] Hirzel, M., "Low-code programming models," Communications
of the ACM, vol. 66, pp. 76-85, 2023.

[23] Hromkovič, J., D. Komm, R. Lacher, and J. Staub, "Teaching
with LOGO philosophy," Encyclopedia of Education and
Information Technologies, 2019.

[24] Hromkovic, J. and J. Staub, "The Problem with Debugging in
Current Block-based Programming Environments," Bulletin of
EATCS, vol. 135, 2021.

[25] Huang, R., K. Ferdowsi, A. Selvaraj, A. G. Soosai Raj, and S.
Lerner, "Investigating the impact of using a live programming
environment in a CS1 course," in Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education-Volume
1, 2022, pp. 495-501.

[26] Hundhausen, C. D., S. Farley, and J. Lee Brown, "Can Direct
Manipulation Lower the Barriers to Programming and Promote
Positive Transfer to Textual Programming? An Experimental
Study," in VLHCC '06: Proceedings of the Visual Languages
and Human-Centric Computing, 2006, pp. 157-164.

[27] Johnson, B., Y. Song, E. Murphy-Hill, and R. Bowdidge, "Why
don't software developers use static analysis tools to find bugs?,"
in 2013 35th International Conference on Software Engineering
(ICSE), 2013, pp. 672-681.

[28] Johnson, M., "Generative AI and CS Education,"
Communications of the ACM, vol. 67, pp. 23-24, 2024.

[29] Kafai, Y., "Playing and Making Games for Learning," Games
and Culture, vol. 1, pp. 36-40, 2006.

[30] Kahn, K., "Should LOGO keep going forward 1?," Informatics
in Education-An International Journal, vol. 6, pp. 307-321,
2007.

[31] Knuth, D. E., "The errors of TEX," Software: Practice and
Experience, vol. 19, pp. 607-685, 1989.

[32] Koper, R., "Current research in learning design," Journal of
Educational Technology & Society, vol. 9, pp. 13-22, 2006.

[33] Lieberman, H., Your Wish Is My Command: Programming by
Example. San Francisco, CA: Morgan Kaufmann Publishers,
2001.

[34] McCauley, R., S. Fitzgerald, G. Lewandowski, L. Murphy, B.
Simon, L. Thomas, and C. Zander, "Debugging: a review of the
literature from an educational perspective," Computer Science
Education, vol. 18, pp. 67-92, 2008.

[35] McDirmid, S., "Usable Live Programming," presented at the
SPLASH Onward!, Indianapolis, Indiana, 2013.

[36] Michaeli, T. and R. Romeike, "Current status and perspectives
of debugging in the k12 classroom: A qualitative study," in 2019
ieee global engineering education conference (educon), 2019,
pp. 1030-1038.

[37] Michotte, A., The Perception of Causality. London: Methuen &
Co. Ltd., 1963.

[38] Mohamad, S. N. H., A. Patel, R. Latih, Q. Qassim, L. Na, and Y.
Tew, "Block-based programming approach: challenges and
benefits," in Proceedings of the 2011 International Conference
on Electrical Engineering and Informatics, 2011, pp. 1-5.

[39] Mondada, F., M. Bonani, F. Riedo, M. Briod, L. Pereyre, P.
Rétornaz, and S. Magnenat, "Bringing robotics to formal
education: The thymio open-source hardware robot," IEEE
Robotics & Automation Magazine, vol. 24, pp. 77-85, 2017.

[40] Musaeus, L. H. and P. Musaeus, "Computational Thinking in the
Danish High School: Learning Coding, Modeling, and Content
Knowledge with NetLogo," in Proceedings of the 50th ACM
Technical Symposium on Computer Science Education, 2019,
pp. 913-919.

[41] Newley, A., H. Deniz, E. Kaya, and E. Yesilyurt, "Engaging
elementary and middle school students in robotics through
hummingbird kit with Snap! visual programming language,"
Journal of Learning and Teaching in Digital Age, vol. 1, pp. 20-
26, 2016.

[42] Papert, S., "Microworlds: transforming education," in Artificial
intelligence and education, 1987, pp. 79-94.

[43] Papert, S., Mindstorms: Children, Computers and Powerful
Ideas. New York: Basic Books, 1980.

[44] Papert, S. and I. Harel, Eds., Constructionism. Norwood, NJ:
Ablex Publishing Corporation, 1993, 518 Pages

[45] Pelánek, R. and T. Effenberger, "Design and analysis of
microworlds and puzzles for block-based programming,"
Computer Science Education, vol. 32, pp. 66-104, 2022.

[46] Pokress, S. C. and J. J. D. Veiga, "MIT App Inventor: Enabling
personal mobile computing," arXiv preprint arXiv:1310.2830,
2013.

[47] Repenning, A., "Bending the Rules: Steps toward Semantically
Enriched Graphical Rewrite Rules," in Proceedings of Visual
Languages, Darmstadt, Germany, 1995, pp. 226-233.

[48] Repenning, A., "Conversational Programming: Exploring
Interactive Program Analysis," presented at the 2013 ACM
International Symposium on New ideas, New Paradigms, and
Reflections on Programming & Software (SPLASH/Onward!
13), Indianapolis, Indiana, USA, 2013, 63-74.

[49] Repenning, A., "Escaping the Turing Tar-Pit with AI
Programming Blocks," presented at the The 19th WiPSCE
Conference on Primary and Secondary Computing Education
Research, Munich, Germany, 2024.

[50] Repenning, A., "Excuse me, I need better AI!: employing
collaborative diffusion to make game AI child's play," presented
at the ACM SIGGRAPH symposium on Videogames, Boston,
Massachusetts, 2006, 169-178.

[51] Repenning, A. and A. Basawapatna, "Smacking Screws with
Hammers: Experiencing Affordances of Block-based
Programming through the Hourglass Challenge," presented at
the Special Interest Group on Computer Science Education
Technical Symposium (SIGCSE TS 2021), Toronto, Canada,
2021, 7.

[52] Repenning, A., A. Basawapatna, and N. Escherle,
"Computational Thinking Tools," presented at the IEEE
Symposium on Visual Languages and Human-Centric
Computing, Cambridge, UK, 2016.

[53] Repenning, A. and S. Grabowski, "Scaffolding Creative
Programming Projects," presented at the The 19th WiPSCE
Conference on Primary and Secondary Computing Education
Research 2024, Munich, Germany, 2024.

[54] Repenning, A. and A. Ioannidou, "LEGOsheets: Rule-Based
Programming for the MIT Programmable Brick," CM
Transactions on Computer-Human Interaction, 1998.

[55] Repenning, A., D. C. Webb, K. H. Koh, H. Nickerson, S. B.
Miller, C. Brand, I. H. M. Horses, A. Basawapatna, F. Gluck, R.
Grover, K. Gutierrez, and N. Repenning, "Scalable Game
Design: A Strategy to Bring Systemic Computer Science
Education to Schools through Game Design and Simulation
Creation," Transactions on Computing Education (TOCE), vol.
15, pp. 1-31, 2015.

[56] Repenning A., Basawapatna A.R., and E. N.A., "Principles of
Computational Thinking Tools," in Emerging Research,
Practice, and Policy on Computational Thinking. Educational
Communications and Technology: Issues and Innovations, H. C.
Rich P., Ed., ed: Springer, Cham, 2017, pp. pp 291-305.

[57] Resnick, M. and E. Rosenbaum, "Designing for tinkerability,"
Design, make, play: Growing the next generation of STEM
innovators, pp. 163-181, 2013.

[58] Robertson, T., S. Prabhakararao, M. Burnett, C. Cook, J. R.
Ruthruff, L. Beckwith, and A. Phalgune, "Impact of interruption
style on end-user debugging," in Proceedings of the SIGCHI
conference on Human factors in computing systems, 2004, pp.
287-294.

[59] Rosenberg, J. B., How debuggers work: algorithms, data
structures, and architecture: John Wiley & Sons, Inc., 1996.

[60] Salinas, A. G., "The Relation between Syntax, Semantics and
Pragmatics," Revista de Humanidades: Tecnológico de
Monterrey, pp. 13-19, 2001.

[61] Saqr, M., K. Ng, S. S. Oyelere, and M. Tedre, "People, Ideas,
Milestones: A Scientometric Study of Computational Thinking,"
ACM Transactions on Computing Education (TOCE), vol. 21,
pp. 1-17, 2021.

[62] Seckel, M. J., C. Salinas, V. Font, and G. Sala-Sebastia,
"Guidelines to develop computational thinking using the Bee-
bot robot from the literature," Education and Information
Technologies, vol. 28, pp. 16127-16151, 2023.

[63] Shneiderman, B., "Direct Manipulation: A Step Beyond
Programming Languages," in Human-Computer Interaction: A
multidisciplinary approach, R. M. Baecker and W. A. S. Buxton,
Eds., ed Toronto: Morgan Kaufmann Publishers, INC. 95 First
Street, Los Altos, CA 94022, 1989, pp. 461-467.

[64] Slany, W., "Tinkering with Pocket Code, a Scratch-like
programming app for your smartphone," Proceedings of
Constructionism, 2014.

[65] Smith, D. C., A. Cypher, and J. Spohrer, "KidSim: Programming
Agents Without a Programming Language," Communications of
the ACM, vol. 37, pp. 54-68, 1994.

[66] Spohrer, J. G. and E. Soloway, "Analyzing the high frequency
bugs in novice programs," in Papers presented at the first
workshop on empirical studies of programmers on Empirical
studies of programmers, 1986, pp. 230-251.

[67] Tajeddin, Z. and J. Kamali, "Typology of scaffolding in teacher
discourse: Large data‐based evidence from second language
classrooms," International Journal of Applied Linguistics, vol.
30, pp. 329-343, 2020.

[68] Tanimoto, S. L., "Towards a theory of progressive operators for
live visual programming environments," in Proceedings of the
1990 IEEE Workshop on Visual Languages, 1990, pp. 80-85.

[69] Telles, M. and Y. Hsieh, The Science of Debugging. Scottsdale:
Coriolis Group Books, Scottsdale AZ, USA, 2001.

[70] Voštinár, P., "Creating mobile apps for teaching," in
INTED2018 Proceedings, 2018, pp. 811-816.

[71] Watt, S., "Syntonicity and the Psychology of Programming," in
Proceedings of the Tenth Annual Meeting of the Psychology of
Programming Interest Group, Milton Keenes, UK, 1998, pp. 75-
86.

[72] Yang, D., Z. Yang, and M. U. Bers, "The efficacy of a computer
science curriculum for early childhood: evidence from a
randomized controlled trial in K-2 classrooms," Computer
Science Education, pp. 1-21, 2023.

[73] Yauney, J., S. R. Bartholomew, and P. Rich, "A systematic
review of “Hour of Code” research," Computer Science
Education, pp. 1-33, 2022.

[74] Zha, S., Y. Jin, P. Moore, and J. Gaston, "Hopscotch into
Coding: Introducing Pre-Service Teachers Computational
Thinking," TechTrends, vol. 64, pp. 17-28, 2020.

