

Scaffolding Creative Programming Projects
Alexander Repenning

School of Education
PH FHNW

Windisch Switzerland
alexander.repenning@fhnw.ch

Susan Grabowski
Center for Learning Science

EPFL
Lausanne, Switzerland

susanne.grabowski@epfl.ch

ABSTRACT
While most teachers welcome the idea of learning activities
fostering creativity, it is not clear how to effectively scaffold
creativity. Without suitable pedagogical approaches, it is difficult to
provide appropriate levels of scaffolding. Over-scaffolding, on the
one hand, while providing support appreciated especially by less
experienced students, leaves little room for creative expression.
Under-scaffolding, on the other hand, while fostering more
authentic learning opportunities with a high potential for creativity,
can lead to student frustration. The Process Artifact Creativity
Landscape (PACL) is a framework that helps pre-service teachers
scaffold creative projects. PACL consists of a two dimensional space
providing four scaffolding approaches offering different tradeoffs
between scaffolding and creativity. This paper introduces the PACL
framework and outlines experiences with K–6 preservice teachers
reasoning about scaffold creative programming projects.

CCS CONCEPTS
• Applied computing~Education~Interactive learning environments

KEYWORDS
Computer science education, creativity, scaffolding, computational
thinking, preservice teacher education

ACM Reference format:
Alexander Repenning, and Susan Grabowski. 2024 Scaffolding Creative
Programming Projects, In Proceedings of the 19th WiPSCE Conference on
Primary and Secondary Computing Education Research (WiPSCE ’24), 6
pages. https://doi.org/10.1145/3677619.3677634

1 Introduction
While creativity has long been identified as a key aspiration of a
21st-century workforce and pathway to computer science [15], it is
somewhat unclear how creative projects can be systematically
scaffolded [36] in school. The Computer Science Principles
framework [7] makes creativity the first of the seven big ideas
because creative projects are known to inspire students. It is clear
that teachers play an important role in scaffolding creativity but
there are different theories on how. Some, e.g., [32], suggest that
teachers who are creative themselves teach creatively, resulting in
high potential for creative expression by students. Others, e.g., [21]
have found evidence that creative teaching practice can be
developed through teacher professional development.

CS teachers can, and should, scaffold creative processes but need to
be aware of the delicate nature of scaffolding [33]. Hammond
defines scaffolding to have teachers provide essential but temporary
support to assist learners with the development of new
understandings [11]. The delicate nature is due to the fact that
finding an effective sweet spot of scaffolding is quite difficult.
Imagine a project where students would learn computational
thinking (CT) [35] by creating a Frogger-like game. Over-
scaffolding, such as step-by-step instructions or video tutorials,
likely results in students creating identical artifacts with limited
creative potential. These instructions often lack rationale, hindering
students' grasp of implicit design spaces. Under-scaffolding,
conversely, may lead to students struggling. For instance, merely
suggesting to make a game allows high creative potential but may
cause frustration and potentially causing many students to give up.

The contribution of this paper is to introduce a framework called
the Process Artifact Creativity Landscape (PACL) aiding
inexperienced computer science pre-service teachers in
conceptualizing different kinds of scaffolds for creative
programming projects. PACL aims to provide various pathways to
gradually guide pre-service teachers away from instructionism,
towards constructionism [23] to better scaffold creativity.

2 The Process Artifact Creativity Landscape
We developed the Process Artifact Creativity Landscape (PACL), as
a two dimensional continuous space (Figure 1) outlining different
scaffolding strategies useful in teacher education. In Switzerland,
over 2000 preservice elementary school teachers were educated in
CT through Scalable Game Design [19, 26] employing PACL in the
context of two different courses. In the CT Science course PACL
was employed to teach CT through game design. In the CT
Didactics course teachers create their own learning designs [17].

PACL is about scaffolding creative projects. Like Bloom's
Taxonomy [4], PACL provides teachers a common language [18]
for learning designs. Four approaches combine same or different
processes to create same or different artifacts.:

1. Executing (same process/same artifact). A user can follow
explicit step-by-step instructions to build a specific artifact.
The main goal of Executing is to successfully create an artifact
but not necessarily in a creative sense. Frequently, instructions
are minimal and not optimized for learning. For instance, the
instructions generally do not include explanations on why a
certain step was employed nor do they suggest alternative
construction paths. General Example: IKEA instructions to
assemble a bookshelf. CT Example: A tutorial to build a
Frogger game [25].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the Owner/Author. WiPSCE '24, September 16–
18, 2024, Munich, Germany, © 2024 Copyright is held by the owner/author(s).
ACM ISBN 979-8-4007-1005-6/24/09. https://doi.org/10.1145/3677619.3677634

2. Modding (same process/different artifact). The term
modding is not defined very precisely but generally refers to
the process of changing existing designs, in some typically
superficial way, to adapt the design to a new purpose or need
generally not anticipated by the original designer. A user can
change surface features of an existing design without the
need to understand or fundamentally change the underlying
design or can also slightly modify existing code through
direct editing or remixing [8]. Example: A well-known
example of a game mod is the game “Counter-Strike”
derived from the first-person shooter game “Half-Life.”

3. Re-Coding (different process/same artifact). In Re-Coding
[10] users try to recreate an existing artifact but, in contrast
to Executing, are not provided instructions. Users may
employ techniques such as reverse engineering [5]. In the
context of game design users may play existing
implementations of the game or watch videos describing
game play. While artifacts produced in Re-Coding are not
creative, processes still can be. Users may use radically
different approaches (e.g., different programming
paradigms, strategies, or algorithms) to achieve similar
behaving games.

4. Architecting (different process/different artifact). A user
can employ a rich repertoire of design patterns as design
pattern language [1] to express innovative solutions.
General Example: An architect creatively combines patterns
using modules combining concrete, steel and wood to create
a new kind of house design. CT Example: A user combines
several Computational Thinking Patterns [16] to create a

new kind of game. For instance, a user may combine object
interaction patterns such as collision, generation,
absorption, and pulling acquired through Executing by
making Frogger-like and Snake-like games into a train
simulation game.

Our position is that creative projects can and should be scaffolded
in education using a repertoire of explicit scaffolding approaches
which can be mixed and matched to fit specific learning
situations. The goal is not to find a single one-size-fits-all
approach but to define a continuous landscape suggesting
concrete scaffolding approaches useful to everyday teaching
practice. Some of these approaches, e.g., Executing may not be
particularly creative, per se, but possibly helps to develop
essential skills needed later for creative expression. Others, such
as Architecting, may be quite ambitious and out of reach of
inexperienced students. The contribution of PACL is to serve as a
pedagogical framework. Where is my learning design in the
landscape right now, and where could it go? The continuous
nature of the landscape makes it possible to mix approaches and
interpret them as new intermediate points. For example, a novice-
aimed Hour of Code Frogger-like activity might inspire students
to change the game's characters and narrative, gradually shifting
from Executing to Modding in the PACL landscape.

PACL was first used to teach teachers Computational Thinking
(CT) and then was employed by these teachers to design their
own lesson plans to teach their students. In this paper we used a
survey to explore which parts of the PACL landscape teachers
would use and how they would combine them.

sa
m

e
di
ffe

re
nt

Pr
oc

es
s

Artifactsame different

can apply own
process to replicate
appearance, or
behavior, of artifact
without
understanding original
design process

Re-coding

Play, reverse engineer and create existing games such as
Tetris without knowing how it was implemented originally

can follow explicit
step-by-step
instructions to build
specific artifact

Executing

Build Frogger game using video tutorial

can employ
repertoire of patterns
as abstract pattern
language to
synthesize creative
solutions

Architecting

Invent you own game concept and implement it using
Computational Thinking Pattern

can change surface
features of existing
design

Modding

Replace apples with pears to create pear catching game
out of apple catching game

Figure 1: The Process Artifact Creativity Landscape (PACL) with examples from Computational Thinking.

Finding the right approach, or combination of approaches, may
depend on the individual users but also specific situations. To
assess PACL we asked preservice elementary schools teachers
which approaches they would use and how they would combine
these approaches to design their own K-12 computer science
education courses. The remaining sections of this paper explore
related work and present the results of the teacher questionnaires.

3 Related Work
There is a vast body of literature exploring creativity including
teaching guidelines [31] and instruments, such as the Torrance
test, to measure it [2, 14]. Early on, creativity has been identified
as a motivational pathway towards CS education [15]. The mix
of CS and non-CS examples in Figure 1 is to suggest that the
understanding of creativity in CS education can benefit from
established creativity scaffolding strategies developed in other
fields. One of the most influential conceptualizations of creativity
is the 4P model developed by Rhodes [29]: Person, Process,
Product and Press. PACL is the attempt of projecting the more
theoretical 4D space, implied by the 4P model, onto a more
concrete 2D landscape useful to learning design for teachers.
Related work is organized according to the PACL.

3.1 Executing
Creative processes, such as the GenPlore model developed by
Ward et al. [34], generally include generative and exploratory
phases, creating, evaluating and selecting ideas. In contrast,
processes merely following existing instructions to create
predetermined artifacts without exploring alternatives are not
considered creative. For instance, few would perceive following
IKEA assembly instructions to build a bookcase, following LEGO
car instructions to build the car depicted on the box, or following
a cherry pie recipe to bake said pie to be particularly creative. In
terms of Bloom’s revised taxonomy, Executing is unlikely to
reach the “create” level of the cognitive process dimension. That
is, Executing is unlikely to produce new or original work.
However, Executing when reaching up to the “apply” level [18],
may serve as an important preparatory stepping stone resulting
in foundational factual as well as procedural knowledge.

3.2 Modding
Successful modding requires the ability to draw simple
connections among ideas approximately at the “analyze” level of
the revised Bloom’s taxonomy [3]. The process of game modding
has been employed as engaging educational practice for some
time [37]. In contrast to game design [12], game modding is
typically focused on superficially changing existing games and
not creating new games from scratch.

In computer science education some have observed complex
interactions between modding and creativity. Franklin has
explored modding-based scaffolding approaches providing
students so-called themed starter projects [6]. She notices the
challenge emerging from trying to find the appropriate level of
scaffolding and reports negative impacts of Modding-based over-
scaffolding. Lee outlines a scaffolding progression called Use-
Modify-Create (UMC) in which the modding stage is first

preceded by the use of existing projects and later followed by the
create stage to successfully create simulations and games [20].
Expanding on UMC, Predict, Run, Investigate, Modify and Make
(PRIMM) also connects to levels of abstraction and tracing and
code comprehension research [30].

3.3 Re-Coding
Re-Coding [10] is difficult to characterize from a revised Bloom’s
taxonomy point of view. It transcends the “evaluate” level (second
to top) but does not quite reach the “create” level (top) because, at
least initially, it focuses on the replication of existing artifacts.
The practice of re-coding goes back to the times where novice
painters acquired painting skills by trying to imitate the works of
the grand masters. Originally, imitation consisted of attempts to
create exact copies of the works. But today re-coding tries also to
reverse engineer [5] principles behind the artifacts with the goal
to not only create imitations but, more importantly, to create
original art based on the same principles. In the context of
programming re-coding was first used to develop program code
capable of re-creating works of early computer art and later as
means to learn about programming as well as art [10]. Re-coding
tries to reverse engineer [5] algorithmic thinking from artifacts.
To reverse engineer a game students may play with existing
implementations which they decompose into recognizable
patterns such as Computational Thinking Pattern [16].

3.4 Architecting
Reaching the top of the revised Bloom’s taxonomy (“create” new
and original work), Architecting has huge potential to foster
creativity but unless properly supported Architecting may be out
of reach for inexperienced students. The challenge is to find
intuitive constructs bridging expert-level design understanding
with highly limited programming skills of novices [24]. These
constructs need to be suited for educational purposes. Design
patterns help to scaffold creative processes effectively for novices
by embodying effective configurations of components that have
been established by experts. Kim, et al., describe how they scaffold
creative work by using storytelling patterns extracted from stories
created by experts [13]. The notion of patterns has been
established early in architecture as pattern language by the
seminal book of Alexander [1] and later applied to software [9].
Computer science education specific patterns emerged over time
including the Computational Thinking Patterns [16] embodying
patterns found in common between game design and simulation
building. Interdisciplinary patterns, such as the Computational
Music Thinking Patterns [28], connect CS with music.

4 Implementation
66 subjects recruited from a total of 99 preservice elementary
school K-6 teachers in four Computer Science courses taking
place in Spring of 2021 at the PH FHNW School of Education
were participating in a survey exploring teachers’ viewpoints
regarding the Process Artifact Creativity Landscape (PACL). This
research was conducted according to the ethical standards of
FHNW ensuring informed consent, participant privacy, and data
integrity in our empirical studies with adult students. These
preservice teachers are bachelor students with limited or no

experience in teaching CS. 76% of the teachers in this program
were female. Teachers had previously participated in a
mandatory CT Science and CT Didactics courses [26].

Teachers were exposed to the PACL framework in two different
contexts. During the 14 week CT Science course PACL was used
explicitly to classify educational activities such as following a
tutorial to make a Frogger-like game (Executing) early in the
course, and designing their own game (Architecting) as final
projects of the course. Later, in the 14 week CT Didactics course,
PACL was used again as a pedagogical framework to design three
tutorials [26]. As a final project in the CT Didactics course
teachers had to design their own lesson plan for elementary
school K-12 students.

The survey took place before the final lesson plan design project
with the idea to make teachers brainstorm about scaffolding
creativity in their learning designs. The lesson plans created by
the teachers were not part of the study. Lesson plans focused on
teaching CT using game design [27] as an approach and leaving
a lot of room for creativity. Creativity is a key idea of the 7 Big
Ideas part of CS Principles framework [7] used to structure the
CT Science course. The survey consisted of 5 open questions
prompting an average of about 500 words to be written per
subject. The first 4 questions asked if and how they would use
each of the approaches (Executing, Modding, Re-Coding, and
Architecting). The fifth question was the most important question
for us as it asked teachers when, how and why they would
transition from one scaffolding approach to another.

5 Use Cases Anticipated by Teachers
Anticipated use cases suggested by teachers indicate when to use
each PACL approach and how to combine them into a strategy.
Each section below reports one key observation and outlines the
categories that emerged from coding teachers’ answers. The
categories are sorted from highest to lowest percentages. Quotes
from teachers are included when appropriate. Sections 5.1 - 5.4
report use case percentages for the Executing, Modding, Re-
Coding and Architecting PACL approaches. Only the three most
frequent coded responses are presented. Section 5.5 reports
strategies suggested to combine PACL approaches.

5.1 Executing
Key Observation: In spite of the perceived lack of potential to
foster creativity, Executing is considered an important
preparatory scaffolding approach for future creative activities.

Example: “In order to get to know the functions of [programming
tool], I find executing useful. Because this is not about developing
your own creativity, but getting to know the tool, which is later a
“means to an end” for creativity and computational thinking.”

#1 Introduction Activities (50.8%). The majority of teachers
were thinking of Executing as a fitting approach to introduce new
learning activities e.g., “Yes, I would use executing. I think it can
be very helpful, especially at the beginning, because it provides
children with precise instructions. In this way you get to know
the principle and can collect many success stories, which will
motivate you to continue working in the future.”

#2 Teaching Basics (16.9%). Executing can teach basics to all
students or serve as a just-in-time tutorial for those who missed
classes. Example: “I would use Executing to show the pupils the
very simple basics and to ensure that they can find their way
around the programming interface independently. With a ZPF
[Zones of Proximal Flow] video tutorial I show the pupils how to
log in and how to clone my project.”

#3 Support of less experienced students (12.3%). Executing can
be targeted to support less experienced students, e.g., “I would use
executing, because it helps students with learning challenges
when they can get step-by-step instructions in order to come to a
result at the end.”

5.2 Modding
Key Observation: Modding is a way for teachers to provide a
framework from which students can be creative.

#1 Extension of Teacher Project (42.2%). The modding of
teacher-created projects is very popular. Example: “I would give
[students] a pre-programmed game and show how they can
change it (characters, colors, worlds and design).”

#2 Fostering Creativity (35.6%). A large number of use cases
mention creativity as an important goal of the learning activity.
In many cases creativity is assumed to be relevant for motivation,
e.g., “I would also use modding in my lessons, as the pupils can
develop their creativity, but are not left completely on their own.
For example, I could create a maze as a template. The pupils
should then program their own labyrinth according to their own
ideas, drawing the walls and the agents themselves. They can also
add different rules to complicate the maze (enemy, obstacle, etc.).”

#3 Follow Up to Execution (10%). A small number of use cases
mention explicitly that they are considered to be follow ups to
Execution activities. E.g., “I would also use modding in the
classroom and probably do it after executing. The pupils can
change the project, which they previously created.”

5.3 Re-Coding
Key Observation: Re-Coding is for advanced students as they
must make a specific artifact without low level direction.

#1 For Advanced Students (56.4%). Students should already have
experience in programming and creating games to make this
work. Example: “I think the Re-Coding is very good, because with
this method the children have to think a lot for themselves. They
know what they should get in the end and now they have to find
a way to get there. I think this method is not suitable from the
start because you need to be familiar with [the tool] first.”

#2 Fostering Creativity (27.3%). In spite of also producing a
predefined artifact, just like Executing, Re-Coding scored high in
terms of creativity. Teachers perceive a high potential for
creativity and engagement. Example: “In this way, the pupils can
get creative and try out for themselves how to come up with a
solution. Then they are probably also more proud of their product
and thus more motivated for programming.”

#3 Post Executing and Modding (7.3%). Relatively few mention
Re-Coding as a natural progression following Executing and
Modding. Example: “[I would] not use them until the students
have already gained experience, e.g. with [tool], and have created
a game based on the principles of Executing and Modding.”

5.4 Architecting
Key Observation: Architecting has the highest potential to foster
creativity, requires student experience and suits final projects.

#1 Fostering Creativity (32.5%). Creativity is mentioned most
frequently in the Architecting use cases. The large potential for
creativity is often expressed as implied contrast to other PACL
approaches. Example: “Yes, this is how the pupils can express
their creativity to the maximum. They could realize their own
game idea - recreating games like Frogger or Pacman would of
course not be allowed.”

#2 For Advanced Students (29.3%). Many teachers perceive
Architecting as an approach suited for advanced students. The
skills required to engage in Architecting are identified in different
ways. Some teachers identify age (e.g., “6th grade”). Others talk
about levels of experience necessary to avoid frustration.
Example: “I would use architecting for those pupils who already
have their own ideas and have a certain degree of independence
in programming. I think this is the basic requirement so that the
pupils are not overwhelmed too quickly and they can move in the
zone of proximal development.”

#3 For Final Projects (20.3%). Some teachers believe that
Architecting is suited best for final projects taking place after
Executing, Modding, and Re-Coding scheduled typically at the
end of a semester or school year. Example: “... here children could
implement and realize their ideas. They would have learned a lot
about their program or their game through executing and
modding and could now create their own project from scratch
with a lot of diligence and hard work (hard fun).” Hard fun a is a
reference to the concept of difficult but highly engaging
programming projects introduced by Papert [22].

5.5 Strategy
Key Observation: Most teachers outline a strategy using a
sequence of Executing, Modding, Re-Coding and finally
Architecting in order to cover a wide spectrum of scaffolding
versus creativity tradeoffs.

Strategy is about when, and how, teachers would combine PACL
approaches to deal with the scaffolding versus creativity balance.
The top two suggested strategies were:

EMRA (57%). The vast majority of teachers outlined a Executing
> Modding > Re-Coding > Architecting strategy. Example:
“When I introduce a new topic, I would give the students a lot of
guidance and then use the principle of scaffolding. This means
that I first use the Executing, Modding and Recoding methods in
my annual plan. I would actually always take these steps at the
beginning of a new topic. If the students are already familiar with
the newly learned topic, I would use the method of Architecting.

This allows them to apply the knowledge they have already
learned independently and also to deepen it.”

Flexible (10.6%). Some teachers moved beyond the vision of a
strategy consisting of fixed PACL approach sequences. They
pointed out the need to be flexible by finding the right approach
matching specific learning situations, e.g., “I would offer all
[PACL approaches] in combination and thus offer pupils the
opportunity to work individually at their own level and according
to their personal interests but also skills.”

6 Discussion
Only two subjects (3%) indicated negative dispositions towards
Executing. Both subjects appear to be concerned not only about
the lack of potential to foster creativity but also with the limited
potential for learning e.g., “Because if you were to give them
everything step by step, they don't really have to think for
themselves what they are really doing here.”

Modding was the least controversial approach. Modding was also
the approach that most teachers noticed as an intuitive extension
of other PACL approaches.

Teachers avoiding Re-Coding worry about students getting
frustrated when there is no well-defined and explicit design
process to create specific artifacts. How would teachers know that
their students are ready to engage in a more open-ended process?
Only two teachers mentioned the use of constructs such as
Computational Thinking Patterns [16] which may be helpful to
serve as decompositional abstractions. The tradeoffs between
scaffolding and creativity appeared to be less clear compared to
Architecting. Some teachers suggested that lack of instruction
could results in students frustration. However, in the case of
Architecting they see at least more options for students because
they could build any artifact they want to. Some teachers
suggested that this may offset frustration from lack of instruction.

While Architecting was perceived to have the highest potential
for creativity, teachers were concerned with actually reaching
this approach in their lesson plan. Some commented that students
would need to be of a certain age, have a high level of
programming experience, or already needed to be highly creative
to be able to design their own game concept. In other words, it
was clear that Architecting, while providing minimal scaffolding,
leaves the most room for creativity.

While there was some evidence that teachers have compelling
ideas, or even concrete teaching experience, on how to move
horizontally in the PACL landscape (i.e., from “same artifact” to
“different artifact”) there was only little evidence that they have
compelling strategies to move down vertically (i.e., from “same
process” to “different process”). This may suggest the need to
stress the notion of constructs such Computational Thinking
Patterns as an essential part of scaffolding. In future versions of
the CT Science, and even more so in the CT Didactics courses,
one should contemplate the use of more explicit practices to
provide guidelines for appropriate levels of competences as
preconditions to transition to Re-Coding and Architecting
approaches. Perhaps it would help to make the notion of pattern

competence, i.e., the understanding of Computational Thinking
Patterns, more distinct. Research, for instance, could explore the
role of gamification to reach concrete learning goals.

The EMRA (Executing > Modding > Re-Coding > Architecting)
strategy was clearly preferred by a large margin (EMRA 56.1%,
MRA 4.5%, EMR 3%, others 1.5%). Using that sequence in the CT
Science course probably played an important role. Some answers
hinted quite concretely in this direction, e.g., “Basically, my idea
would be to structure the lessons [plan] as we have already
experienced [in the CT Science course].” Additionally, the survey
questions were also EMRA sequenced which could have further
amplified this bias. However, the main point of this paper is not
that teachers preferred a specific approach progression as method
but, similar to the goal of Bloom’s taxonomy [18], that teachers
had developed a common language to effectively reason about
creativity versus scaffolding tradeoffs. Evidence of this reasoning
was not only found in the questionnaires but also in the lesson
plans which they had to produce as final projects for the course.

Conclusions
To foster creativity in K-12 computer science education teachers
benefit from frameworks helping them to scaffold creative
projects. The Process Artifact Creativity Landscape (PACL)
provides a conceptual, two-dimensional space that can help
teachers to classify pedagogical approaches providing different
tradeoffs between scaffolding and creativity. PACL consists of
four distinct approaches called: Executing, Modding, Re-Coding,
and Architecting. A survey suggests that most teachers were able
to use PACL to reason about individual activities and complete
lesson plans. This reasoning allowed them to suggest appropriate
scaffolding to support creative programming projects.

REFERENCES
[1] Alexander, C., The timeless way of building vol. 1: New york: Oxford

university press, 1979.
[2] Amabile, T. M. and J. Pillemer, "Perspectives on the social psychology of

creativity," The Journal of Creative Behavior, vol. 46, pp. 3-15, 2012.
[3] Anderson, L. W. and D. R. Krathwohl, A taxonomy for learning, teaching,

and assessing: A revision of Bloom's taxonomy of educational objectives:
Longman, 2001.

[4] Bloom, B. S., "Taxonomy of educational objectives. Vol. 1: Cognitive
domain," New York: McKay, vol. 20, p. 1, 1956.

[5] Chikofsky, E. J. and J. H. Cross, "Reverse engineering and design recovery:
A taxonomy," IEEE software, vol. 7, pp. 13-17, 1990.

[6] Coenraad, M., J. Palmer, D. Weintrop, D. Eatinger, Z. Crenshaw, H. Pham,
and D. Franklin, "The Effects of Providing Starter Projects in Open-Ended
Scratch Activities," in Proceedings of the 52nd ACM Technical Symposium
on Computer Science Education, 2021, pp. 38-44.

[7] Cuny, J., "Transforming k-12 computing education: an update and a call to
action," ACM Inroads, vol. 6, pp. 54-57, 2015.

[8] Dasgupta, S., W. Hale, Andr, #233, s. Monroy-Hern, #225, ndez, and B. M.
Hill, "Remixing as a Pathway to Computational Thinking," presented at the
Proceedings of the 19th ACM Conference on Computer-Supported
Cooperative Work & Social Computing, San Francisco, California, USA,
2016, 1438-1449.

[9] Gamma, E., R. Helm, R. Johnson, and J. Vlissides, "Design patterns:
Abstraction and reuse of object-oriented design," in European Conference on
Object-Oriented Programming, 1993, pp. 406-431.

[10] Grabowski, S. and F. Nake, "Between the Trivial and the Impossible.
ReCoding as Learning Strategy."

[11] Hammond, J. and P. Gibbons, "What is scaffolding," Teachers’ voices, vol.
8, pp. 8-16, 2005.

[12] Kafai, Y., "Playing and Making Games for Learning," Games and Culture,
vol. 1, pp. 36-40, 2006.

[13] Kim, J., M. Dontcheva, W. Li, M. S. Bernstein, and D. Steinsapir, "Motif:
Supporting novice creativity through expert patterns," in Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Systems,
2015, pp. 1211-1220.

[14] Kim, K. H., "Can we trust creativity tests? A review of the Torrance Tests of
Creative Thinking (TTCT)," Creativity research journal, vol. 18, pp. 3-14,
2006.

[15] Knobelsdorf, M. and R. Romeike, "Creativity as a pathway to computer
science," in Proceedings of the 13th annual conference on Innovation and
technology in computer science education, 2008, pp. 286-290.

[16] Koh, K. H., H. Nickerson, A. Basawapatna, and A. Repenning, "Early
validation of Computational Thinking Pattern Analysis," presented at the
Proceedings of the 2014 Conference on Innovation & Technology in
Computer Science Education (ITICSE), Uppsala, Sweden, 2014, 213-218.

[17] Koper, R., "Current research in learning design," Journal of Educational
Technology & Society, vol. 9, pp. 13-22, 2006.

[18] Krathwohl, D. R., "A revision of Bloom's taxonomy: An overview," Theory
into practice, vol. 41, pp. 212-218, 2002.

[19] Lamprou, A. and A. Repenning, "Teaching how to teach Computational
Thinking," presented at the the 23rd Annual Conference on Innovation and
Technology in Computer Science Education (ITiCSE 2018), Larnaca,
Cyprus, 2018.

[20] Lee, I., F. Martin, J. Denner, B. Coulter, W. Allan, J. Erickson, J. Malyn-
Smith, and L. Werner, "Computational thinking for youth in practice," Acm
Inroads, vol. 2, pp. 32-37, 2011.

[21] Nikolopoulou, K., "Creativity and ICT: Theoretical approaches and
perspectives in school education," in Research on e-Learning and ICT in
Education, ed: Springer, 2018, pp. 87-100.

[22] Papert, S. (1985). Hard Fun. Available:
http://www.papert.org/articles/HardFun.html

[23] Papert, S. and I. Harel, Eds., Constructionism. Norwood, NJ: Ablex
Publishing Corporation, 1993, 518 Pages

[24] Repenning, A. and A. Basawapatna, "Explicative programming,"
Communications of the ACM, vol. 64, pp. 30-33, 2021.

[25] Repenning, A., A. Basawapatna, D. Assaf, C. Maiello, and N. Escherle,
"Retention of Flow: Evaluating a Computer Science Education Week
Activity," presented at the Special Interest Group of Computer Science
Education (SIGCSE 2016), Memphis, Tennessee, 2016.

[26] Repenning, A., A. Lamprou, and A. Basawapatna, "Computing Effect Sizes
of a Science-first-then-didactics Computational Thinking Module for
Preservice Elementary School Teachers," presented at the Special Interest
Group on Computer Science Education Technical Symposium (SIGCSE TS
2021), Toronto, Canada, 2021, 7.

[27] Repenning, A., D. C. Webb, K. H. Koh, H. Nickerson, S. B. Miller, C. Brand,
I. H. M. Horses, A. Basawapatna, F. Gluck, R. Grover, K. Gutierrez, and N.
Repenning, "Scalable Game Design: A Strategy to Bring Systemic Computer
Science Education to Schools through Game Design and Simulation
Creation," Transactions on Computing Education (TOCE), vol. 15, pp. 1-31,
2015.

[28] Repenning, A., J. Zurmühle, A. Lamprou, and D. Hug, "Computational
Music Thinking Patterns: Connecting Music Education with Computer
Science Education through the Design of Interactive Notations," presented
at the 12th International Conference on Computer Supported Education,
Prag, 2020, 641-652.

[29] Rhodes, M., "An analysis of creativity," The Phi delta kappan, vol. 42, pp.
305-310, 1961.

[30] Sentance, S. and J. Waite, "PRIMM: Exploring pedagogical approaches for
teaching text-based programming in school," in Proceedings of the 12th
Workshop on Primary and Secondary Computing Education, 2017, pp. 113-
114.

[31] Sternberg, R. J. and W. M. Williams, How to develop student creativity:
ASCD, 1996.

[32] Trnova, E. and J. Trna, "Implementation of creativity in science teacher
training," International Journal on New Trends in Education and Their
Implications, vol. 5, pp. 54-63, 2014.

[33] Waite, J. and S. Grover, "Worked examples & other scaffolding strategies,"
Computer Science in K–12: An A to Z Handbook on Teaching
Programming, pp. 240-249, 2020.

[34] Ward, T. B., S. M. Smith, and R. A. Finke, "Creative cognition," Handbook
of creativity, vol. 189, p. 212, 1999.

[35] Wing, J. M., "Computational Thinking," Communications of the ACM, vol.
49, pp. 33-35, 2006.

[36] Wood, D., J. S. Bruner, and G. Ross, "The role of tutoring in problem
solving," Journal of child psychology and psychiatry, vol. 17, pp. 89-100,
1976.

[37] Yucel, I., J. Zupko, and M. S. El‐Nasr, "IT education, girls and game
modding," Interactive Technology and Smart Education, 2006.

