
Article

Journal of Educational Computing
Research
2023, Vol. 61(1) 178–207
© The Author(s) 2022
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/07356331221102312
journals.sagepub.com/home/jec

Types of Errors in Block
Programming: Driven by
Learner, Learning
Environment

Anat Ben-Yaacov1 and Arnon Hershkovitz1

Abstract
Block programming has been suggested as a way of engaging young learners with the
foundations of programming and computational thinking in a syntax-free manner.
Indeed, syntax errors—which form one of two broad categories of errors in pro-
gramming, the other one being logic errors—are omitted while block programming.
However, this does not mean that errors are omitted at large in such environments. In
this exploratory case study of a learning environment for early programming (Kodetu),
we explored errors in block programming of middle school students (N = 123), using
log files drawn from a block-based online. Analyzing 1033 failed executions, we found
that errors may be driven by either learners’ knowledge and behavior, or by the
learning environment design. The rate of error types was not associated with the
learners’ and contextual variables examined, with the exception of task complexity (as
defined by SOLO taxonomy). Our findings highlight the importance of learning from
errors and of learning environment design.

Keywords
block programming, computational thinking, student errors, error classification, log
files, learning analytics

1Tel Aviv University, Tel Aviv, Israel

Corresponding Author:
Arnon Hershkovitz, School of Education, Tel Aviv University, P.O.Box 39040, Tel-Aviv 6997801, Israel.
Email: arnonhe@tauex.tau.ac.il

https://us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/07356331221102312
https://journals.sagepub.com/home/jec
https://orcid.org/0000-0003-1568-2238
mailto:arnonhe@tauex.tau.ac.il
http://crossmark.crossref.org/dialog/?doi=10.1177%2F07356331221102312&domain=pdf&date_stamp=2022-06-18
Alexander Repenning



Introduction
Block programming has been suggested as a way to engage young children with the
basic foundations of programming—and computational thinking at large—without the
hassle of writing actual code (Sáez-López et al., 2016; Weintrop & Wilensky, 2015;
Zhang & Nouri, 2019). Using a simple graphical interface, which is most commonly
based on drag-and-drop interactions, learners can quickly and easily construct a
computer program from basic blocks just like they would build a structure from little
Lego bricks. Not surprisingly, the popularity of block programming has grown, and it is
now used by millions of children and teens around the globe employing platforms like
Scratch (https://scratch.mit.edu), Hour of Code (https://hourofcode.com), or Tynker
(https://www.tynker.com). One of the prominent advantages—and promises—of using
block programming is that learners are not prone to syntax errors, which characterizes
novice and often also expert) programmers (Jackson et al., 2005; McCall & Kölling,
2015).

Errors may be beneficial for learners, in particular when they are responded with an
effective corrective feedback, which allows students to reflect upon their attempts to
solve a problem and to identify preconceptions (Metcalfe, 2017). Thus, error detection
and error-driven teaching have been suggested as effective practices in teaching
programming and computational thinking (Harrison & Hanebutte, 2018; Koehler,
2020; Nalaka & Edirisinghe, 2008). To support such methods, a deep understanding of
novice programmers’ errors should first be established; indeed, much has been studied
in this context over the last decades (Chan Mow, 2012; Gladwin, 1987; Jackson et al.,
2005; Ko &Myers, 2003; McCall & Kölling, 2015; Shooman, 1975). Despite the great
importance of errors when learning to program, and despite the rising popularity of
block programming, research in the field of block programming errors is still in its
infancy. This is the gap we aimed to bridge in this exploratory research, that will serve
as a first step towards furthering research in this field. We do so in a case study of a
single learning environment for early programming (Kodetu).

Hence, the main purpose of the current study was to identify and classofy types of
errors of young students in block programming, and to test for associations between
these types and characteristics of the task and the learner. To meet this goal, we set up
the following research questions:

1. What are the types of errors of young students in block programming and what is
their distribution?

2. What are the associations between the types of errors and the following task
characteristics?

a. Level;
b. Computational thinking concept;
c. Difficulty.
3. What are the associations between the types of errors and the following learner

characteristics?

Ben-Yaacov and Hershkovitz 179

https://scratch.mit.edu
https://hourofcode.com
https://www.tynker.com


a. Gender;
b. Programming experience.

As this is—as far as we are aware of—the first study to focus on the identification
and categorization of errors in block programming, we have no solid basis for setting up
hypotheses for the types of errors, their frequencies, and their relationships with the
various research variables. Therefore, we took an exploratory, bottom-up approach,
using a large dataset of student errors. The rest of the paper is arranged as follows: In the
section below, we will review the relevant literature about novices’ errors in pro-
gramming and about the ways in which block programming languages have been
implemented in computer science education, and will lay down the theoretical
framework for defining task difficulty in computer science education; we will then give
full details about the methodological aspects of the reported study, followed by a
description of our findings; finally, we will discuss the findings and their implications.

Literature Review
A computer program is a set of commands, written in a designated language, readable
by a computer, and aimed at performing a specific task. Therefore, an error in pro-
gramming normally takes one of two main forms: either preventing the computer from
successfully running a code, or allowing it to run the code, however, with an undesired
outcome. Broadly speaking, there are three common types of errors in programming:
syntax, semantic, and logic (or logical) errors (Hristova et al., 2003; McCall & Kölling,
2015). Syntax errors are mistakes in the spelling, punctuation, and order of words in the
program, e.g., using a capital letter when one is not needed, or omitting a semi-colon at
the end of a command when it is required. Semantic errors refer to the meaning of the
code, e.g., not declaring a variable before using it (in languages that require a dec-
laration), or trying to assign a real number to a variable that is defined as integer only.
The third type, logic errors, refers to mistakes in the logical structure of the program,
e.g., using a wrong logical operation or calculation, sequencing operations in the wrong
order, or repeating a command or a set of commands the wrong number of times.

Notably, syntax and semantic errors are strongly associated with the design specific
to the programming language in use, hence their frequency is language-dependent
(Grandell et al., 2005; McIver, 2000a), while logic errors are usually language-
independent and have more to do with the programmer’s reasoning. As our re-
search is focused on block programming, which was originally introduced to reduce
syntax and semantic errors, we are mostly interested in logic errors. The following sub-
sections review the relevant background to logic errors and block programming.

Errors in Programming
Logic errors are the most common errors for novice programmers. Analyzing about
300,000 function implementations of learners of introductory programming MOOCs,

180 Journal of Educational Computing Research 61(1)

Alexander Repenning



Smith and Rixner (2019) found that logic errors accounted for about half of the total
errors in students’ codes. Furthermore, while syntax and semantic errors usually cause
compilation or runtime failure and maybe spotted and fixed using feedback from the
development environment (Becker et al., 2016; Marwan et al., 2019; Qian & Lehman,
2019; Staub, 2021), logic errors are more difficult to debug, hence tend to remain in the
code (Smith & Rixner, 2019).

Logic errors are commonly caused by faulty algorithmic design or with miscon-
ceptions regarding the very structure of programming tasks (Ettles et al., 2018). Therefore,
reducing such errors usually involves engaging students with algorithmic thinking and
with the fundamental concepts of programming, like the way loops are structured or the
way variables represent specific values (Agbo et al., 2019; Grover & Basu, 2017).
Brennan and Resnick (2012) defined such concepts—including sequences, loops, par-
allelism, events, conditionals, operators, and data—as the basic dimension of compu-
tational thinking which emerges when engaging with bock programming. Algorithmic
thinking, in which problem-solving is done in a systematic, step-by-step manner, is
considered as a cornerstone of computational thinking as a higher-order thinking skill
(Shute et al., 2017). Some meta-cognitive practices are part of Brennan and Resnik’s
second dimension of computational thinking, specifically, being incremental and iterative,
testing and debugging, reusing and remixing, and abstracting and modularizing.

Therefore, identifying and correcting logic errors may involve meta-cognitive skills
(Ginat & Shmallo, 2013), and following that notion, error-detecting has been suggested
as a powerful pedagogical tool in programming teaching (Nalaka & Edirisinghe, 2008).
Due to the unique cognitive and meta-cognitive skills involved in the process of
debugging logic errors and due to the distinctive role these types of errors play in the
field of computer science education, attempts have been made to focus on reducing as
much as possible the burden of engaging with other types of errors. As a result, the use
of block programming languages has become popular.

Block Programming
Learning to program is a complex task, which involves both general algorithmic
thinking knowledge and particular knowledge of the specific programming language in
use. In order to reduce the hassle of this task, visual programming languages—which
have learners focus mostly on the logical foundation of programming—have been
developed. In visual programming, users face a graphical interface that presents them
with the available commands, with each command designed as a block (hence the term
‘block programming’); using drag-and-drop, users can construct a program by creating
a sequence (or sequences) of blocks. This way, writing a code is similar to building a
Lego construction from individual blocks, and syntax errors are eliminated, as
commands are a priori written and are capable of being joined together only when it
makes sense (Kelleher et al., 2002; Maloney et al., 2010).

The most popular block programming languages are Scratch (https://scratch.mit.
edu; developed in MIT Media Lab), Alice (http://www.alice.org; developed by the late

Ben-Yaacov and Hershkovitz 181

https://scratch.mit.edu/
https://scratch.mit.edu/
http://www.alice.org/


Prof. Randy Pausch of Carnegie Mellon University), and Google’s Blockly (https://
developers.google.com/blockly). Notable, block programming languages can be
powerful tools for “real” programming; indeed, one can use them to build complex
virtual or physical artifacts, e.g., with MIT’s App Inventor (https://appinventor.mit.
edu), BBC’s micro:bit (https://microbit.org), or Lego Mindstorms.

Block programming, more than conventional text-based programming, may mo-
tivate students to learn “real” programming; furthermore, knowledge and experience
gained with block programming may facilitate learning the more advanced material in
text-based programming (Armoni et al., 2015; Ouahbi et al., 2015). As such, block
programming languages have been suggested as a great means to promote learners’
understanding of programming and of computational thinking at large (Fagerlund et al.,
2021; Lye & Koh, 2014; Montiel & Gomez-Zermeño, 2021). Many learning envi-
ronments have used block programming in a game-based design that adds some
motivational aspects to the learning process (Tatar & Eseryel, 2019; Theodoropoulos &
Lepouras, 2020).

Importantly, learning in block programming environments has been found to be
associated with learner characteristics, in particular gender (Eguı́luz et al., 2017; Funke
&Geldreich, 2017; Hsu, 2014; Seraj et al., 2019)—however, not necessarily in terms of
learning progress or success, but rather in different patterns of use or behavior—and
prior coding experience, which was associated with either an appreciation of the block
programming affordances or less enjoyment from practicing it (Bakali et al., 2018;
Eguı́luz et al., 2017; Menounou et al., 2019; Weintrop & Wilensky, 2015).

Certainly, using block programming languages does not fully eliminate errors,
however, it keeps space mostly for logical errors (Socratous & Ioannou, 2020), which
emphasizes the fact that algorithmic thinking is the core skill to be acquired while using
such languages. As for the importance of learning from errors, for both students and
teachers (Metcalfe, 2017; Rach et al., 2013; Tulis et al., 2016), it is important to
understand which errors are most common in such programming languages. This is the
focus of the current research.

Using Taxonomies of Learning in Computer Science Education
Taxonomies of learning are classifications of desired learning objectives or learning
outcomes. Bloom’s Taxonomy is probably the most known of them. The original
taxonomy (Bloom et al., 1956) referred to six hierarchical levels of educational
objectives sorted in increasing order by complexity, namely knowledge, compre-
hension, application, analysis, synthesis, and evaluation. Later, it was revised by one of
the original taxonomy’s designers, and it is now common to refer to the following six
levels: remember, understand, apply, analyze, evaluate, and create (Anderson &
Krathwohl, 2001). Both versions of Bloom’s Taxonomy have been used in the
field of computer science education, mostly for assessing learners’ knowledge
(Masapanta-Carrión & Velázquez-Iturbide, 2018). For example, Ullah et al. (2020)
have defined the following six assessment criteria, based on the original Bloom’s

182 Journal of Educational Computing Research 61(1)

https://developers.google.com/blockly
https://developers.google.com/blockly
https://appinventor.mit.edu/
https://appinventor.mit.edu/
https://microbit.org/


Taxonomy: define the syntax of each structure used in a program (knowledge), explain
each structure used in a program (comprehension), apply each structure used in a
program as per the required output (application), breakdown the program by using
nested structures or multiple structures of the same topic (analysis), synthesize the
problem by using an appropriate structure of each topic of the program (synthesis),
and, judge problem criteria and choose the most effective structure of the topic for
problem solving (evaluation). Other proposed teaching and learning strategies, based
on the revised taxonomy, are learning by typing (remember), learning by appreciating
examples (understand), learning by modifying open sourced codes (apply), learning by
partial coding (analyze), learning by debugging (evaluate), and learning by problem
solving (create) (Lai et al., 2020).

Another common taxonomy of learning is the Structure of the Observed Learning
Outcomes (SOLO) (Biggs & Collis, 1982). As its name suggests, SOLO Taxonomy
classifies learning based on learners’ responses. Assuming that learning becomes more
complex as it progresses, this taxonomy refers to five phases. At its lowest level, it
defines a pre-structural phase, in which a learner fails to demonstrate the required
knowledge; next, during the unistructural level, a learner picks up only one or a few
aspects of the task with which they are engaged; then, during the multi-structural level,
they may pick up several aspects, however, without connecting them to each other;
when integration of different aspects occur, the learner gets to the relational level;
finally, when generalization and transfer of that acquired knowledge are achieved, the
learner gets to the extended abstract level.

Just like Bloom’s Taxonomy, SOLO is alo domain-independent and has been
implemented in the field of computer science education. Whalley et al. (2011) have
offered an implementation of SOLO taxonomy for the assessment of code writing; their
framework includes the following stages that describe to students’ codes: substantially
lacking knowledge of programming constructs or is unrelated to the question (pre-
structural), representing a direct translation of the specifications (unistructural), rep-
resenting a translation that is close to a direct translation (multi-structural), providing a
valid well-structured program that removes any redundancy and has a clear logic
structure (relational), and finally, using constructs and concepts beyond those required
in the exercise, that improve the solution (extended abstract). Since the development of
that version of the SOLO Taxonomy, it has been used to assess students’ solutions in
programming in various contexts (Ginat & Menashe, 2015; Izu et al., 2016; Lister
et al., 2006; Seiter, 2015). As our study is focused on classifying students’ errors, that
is, our data consists of students’ learning outcomes, we preferred SOLO Taxonomy
over others. Overall, as computational thinking and programming tasks involve
cognitive processes that cover the full range described by SOLO, this taxonomy is
suitable for studying such skills (Selby, 2015). Indeed, SOLO has been also used in the
broader context of computational thinking, for designing and evaluation learning tasks
(L. Lin et al., 2017; Parmar et al., 2022). Recently, Kaspersen et al. (2021) explicitly
demonstrated how a computational thinking program can promote young learners
across all the dimensions of Brennan and Resnick’s (2012) framework by addressing

Ben-Yaacov and Hershkovitz 183



all levels of SOLO taxonomy. Importantly, Kasperson et al. emphasized that each of
Brennan and Resnick’s dimensions (concepts, practices, perspectives) could be pro-
moted at each of SOLO levels (unistructural, multistructural, relational, and extended
abstract).

Importantly, both Bloom’s and SOLO taxonomies—although originally aimed at
classifying learners’ cognitive level or solution complexity—have also been used to
classify learning tasks. This is usually done by mapping a task based on its desired
solution, or as Petersen et al. (2011) put it, by “the characteristics of a response to which
they would award full marks” (p. 632). This is similar to the case of the broader terms,
“higher-order thinking” and “lower-order thinking”, which traditionally refer to
learner’s skills or practices, and have also been used to characterize tasks based on the
thinking level required to solve them (Haleva et al., 2021; Mohd Darby & Mat Rashid,
2017; Osadi et al., 2017; Rubin & Rajakaruna, 2015). We adopt this use, and will
categorize the tasks in our studied learning environment based on SOLO Taxonomy; by
doing so, we ignore the pre-structural level of the taxonomy, as each of the classified
problems require some knowledge to correctly solve it.

Methodology
Our exploratory case study is based on a secondary analysis of log files drawn from
students’ use of an online learning environment for basic concepts in programming
(Hershkovitz et al., 2019). Log files have been previously used to study errors in
programming (Rodrigo et al., 2013; Seo et al., 2014; Thompson, 2006; Yarygina,
2020); mostly, such studies have referred to cases in which programs did not run
completely successfully—either due to compilation error or run-time error—that is,
generally focusing on syntax or semantic errors. Our approach is different, as we—
while studying block programming, in which such errors are not possible—refer only to
logic errors. Hence, our data include submitted codes that ran successfully but did not
result in the expected outcome. Therefore, we had to manually classify the submitted
codes for understanding the reason for not achieving the desired goal.

Population and Data Collection
The data we analyzed were collected in April 2017 from a population of N =
123 primary school Spanish students, 10–12 years old (51% boys and 49% girls–63 and
60, respectively). About half of the participants did not have any previous experience
with coding (63 of 123, 51%). The students arrived to an outreach activity organized by
the Faculty of Engineering of the University of Deusto (Bilbao, Spain), and participated
in a workshop about technology, programming, and robotics. During this workshop, the
students used Kodetu for about 50 minute, engaging with a module consisting of
15 challenges, increasingly ordered by level of difficulty. Before playing this game,
participants had completed a short online questionnaire, in which they self-reported on
a few background variables (gender, age, coding experience).

184 Journal of Educational Computing Research 61(1)

Alexander Repenning
not true

Alexander Repenning

Alexander Repenning

Alexander Repenning



Learning Environment: Kodetu
Kodetu (http://kodetu.org) is a web app built using Google’s Blockly (https://
developers.google.com/blockly) for teaching basic programming skills (Eguı́luz
et al., 2017). This platform has been recently used to assess the acquirement of
computational thinking, as well as creativity in programming (Eguı́luz et al., 2017;
Guenaga et al., 2021; Israel-Fishelson et al., 2021). Each of Kodetu’s challenges
presents the user with a maze in which an astronaut should get to a marked destination.
Guiding the astronaut to her destination is done via a block-based code which the user is
editing. Moving to the next challenge is possible only upon completion of the current
challenge.

In the module used by our participants there were 15 challenges, presenting the
user with basic concepts of programming, namely, sequencing (Challenges 1–7),
repetition (Challenges 8–10), and conditioning (Challenges 11–12). Within each
concept, Challenges were sorted by an increasing order of difficulty. The Challenges
were as follows: Challenge 1 introduced a very simple forward-path coding.
Challenges 2–3 introduced a single rotation, using a “turn [right/left]" block, in
different path points. Challenges 4–6 combined more than one rotation in different
combinations, and Challenge 7 was a long maze intended to show the hard manual
work required to lead the astronaut through the path step by step. Challenge 8 in-
troduced the concept of loops, presenting the learners with a “repeat until destination”
block, with the learners being limited to write a 2-block solution, in order to force
them to use that block; code length was limited from that point on. Challenges 9–
10 enhanced the use of loops. Challenges 11–12 presented the concept of condi-
tionals, with a simple if-statement, using an “if path [ahead/to the left/to the right]"
block, allowing to check whether a path existed before moving, and Challenges 13–
14 introduced the concept of more complex conditionals, with an “if path [ahead/to
the left/to the right]/else” block. Finally, Challenge 15 posed the classic problem of a
general maze (difficult even for experienced coders). Those challenges are presented
in Figure 1.

Classifying Kodetu Challenges Based on SOLO Taxonomy
For classifying Challenges based on SOLO taxonomy, we referred to both the
complexity of the problem and of the solution. For doing so, we considered a few
characteristics of the game Challenges and their expected solutions, specifically,
maze complexity—in terms of length and turns required—and types and number of
blocks in the expected solution. Following that, Challenges were classified to the four
upper SOLO levels (Unistructural, Multistructural, Relational, Extended Abstract).
Assuming that any Challenge of the game requires some knowledge, we did not use
the Prestructural level. The classification was done based on the logic presented in
Table 1.

Ben-Yaacov and Hershkovitz 185

http://kodetu.org
https://developers.google.com/blockly
https://developers.google.com/blockly
Alexander Repenning

Alexander Repenning
would that be the 3 rule problem?

Answer: yes



Dataset and Preprocessing
The full log file included over 100,000 rows, each representing an action taken by a
user, including its timestamp, the challenge in which it was taken [1–15], the code
associated with this action, and a result indication. Logged actions included each block
dropping in the editing area, either dragged from the blocks menu or from within the
editing area. In cases where actions did not reflect code execution, the result field took
the value “unset”; otherwise, it took one of the following values: “success” – the
astronaut got to her destination; “failure” –the astronaut stopped before getting to her

Figure 1. Kodetu challenges; figure taken from Eguı́luz et al., 2017, p. 257.

186 Journal of Educational Computing Research 61(1)



destination; “timeout” – the astronaut got into an infinite loop; “error” – the astronaut
fell off the path into the void. For the purpose of this study, we filtered out the logged
actions that reflected non-executions, leaving us with 2679 total executions. This left us
with 1033 failed executions (39%), that is, cases where the astronaut started moving
and did not get to her destination.

It is important to highlight that our dataset included erroneous submissions only,
that is, submissions that did not result in successfully complete the task. We chose
to include successful submissions that may have been inefficient. For example, a
code in which the sudent guided the astronaut to redundantly turn right and im-
mediately left before following further steps. Such solutions are not considered as
erroneous if the astronaut did get to her destination, and as was previously shown,
ineffective solutions may have positive impact on student performance (Rangie
et al., 2018)

Research Process
Error classification was done in a bottom-up approach while reading the codes sub-
mitted in the erroneous runs. This was done by the two authors in an iterative process
and while keeping on full agreement. Each erroneous code could have included

Table 1. Classifying Kodetu challenges based on SOLO taxonomy.

SOLO Level Maze Complexity # Block Types
Solution
Length

Classified
Challenges

Unistructural Straight path 1a Very short 1, 8
Multistructural Single path, includes a single

turn (including a possible
turn of the astronaut from
her initial position)

2+ basic forward/
turn blocks

Short 2, 3, 4, 10

Relational Single path, includes multiple
turns

2+, may involve
nested loop/
condition
blocks

Long 5, 6, 9, 11,
13b

Extended
abstract

Includes junctions, requires
choosing the path to follow

2+, may involve
nested loop/
condition
blocks

Long 7, 12, 14, 15b

aThe actual solution for that Challenge includes a “repeat until destination” loop block in which a single
“forward” block is located; however, as the loop block is already located in the solution area and the user only
has to drag the “forward” block into it—basically, there was nothing else the user could do—we considered
this Challenge as a single block.
bChallenges 13–15 were eventually not included in our analysis due to the small number of students who
completed them, see Dataset and Preprocessing.

Ben-Yaacov and Hershkovitz 187

Alexander Repenning

Alexander Repenning

Alexander Repenning



multiple “atomic errors”, where each one was classified into a single error category.
After categorizing the errors observed in the log file, we ran statistical analyses to test
for associations between the frequency of error types, the variables characterizing the
task (level, computational thinking concept, difficulty) and the learner (gender, pro-
gramming experience).

Findings

Types of Errors
Classifying the erroneous codes resulted in seven types of errors, presented here in
descending order by their overall frequency.

Decomposition (369 of 1033, 35.7%), refers to cases where the erroneous code was
a result of decomposing the problem into smaller problems that were then wrongly
recomposed, either by order or insufficiently. For example, in Challenge 11, a correct
solution involves a “Repeat Until Destination” loop, an “If Path to Left” condition, and
“Forward” steps, in the following order: “Repeat Until Destination (If Path to Left
(Left), Forward)", the following erroneous solution would be classified under this
category: “If Path to Left (Left), Repeat Until Destination (Forward)".

Counting (288 of 1033, 27.9%), referring to cases where the number of the astronaut
steps used in the code was smaller or larger than required. For example, in Challenge 2,
where a correct code would be “Forward→Forward→Right→Forward”, the following
code falls under this category: “Forward→Right→Forward".

Repetition (276 of 1033, 26.7%), referring to cases where the code within a rep-
etition block was wrong, or where the to-be-repeated code was not used within a
repetition block. For example, in Challenge 9, where the loop should include “For-
ward→Left→Forward→Right”, the following code falls under this category: “Repeat
Until Destination (Forward→Left)”. Note that loops were first presented in Level 8.

Orientation (233 of 1033, 22.6%), referring to cases where the astronaut was guided
to turn to a wrong angle. For example, in Challenge 3, where a correct solution could
be: “Right→Forward→Forward”, an erroneous code classified under this category is:
“Left→Forward→Forward”.

Premature (202 of 1033, 19.6%), referring to very short codes which formed the
beginning of an expected solution. For example, in Challenge 4, where a correct
solution could be: “Right→Right→Forward→Forward→Forward”, the following
code falls under this category: “Right→Right”. These erroneous runs could be found by
testing the solution step-by-step.

Conditionals (196 of 1033, 19.0%), referring to cases where a condition—or the
code within it—was wrongly used. For example, in Challenge 11, where the condition
should include “If Path to Left (Left), Otherwise Forward”, a use of “If Path to Left
(Forward), Otherwise Left” would fall under this category. Note that conditionals were
first presented in Level 11.

188 Journal of Educational Computing Research 61(1)

Alexander Repenning

Alexander Repenning
this probably could be avoided with RULER

Alexander Repenning

Alexander Repenning
this probably could be avoided with RULER

Alexander Repenning
does not apply to tasks 1-7

Alexander Repenning

Alexander Repenning

Alexander Repenning

Alexander Repenning



Redundant (56 of 1033, 5.4%), referring to longer-than-expected codes which were
a result of keeping redundant blocks in the editing area. For example, in Challenge 3,
where a correct solution could be: “Right→Forward→Forward”, it is possible that a
student had tried the following erroneous code: “Left→Forward→Forward” (which
would be classified under “Orientation” below), and upon realizing their mistake,
added a “Right” block at the beginning without omitting the “Left”, to form the
following erroneous code that falls under this category: “Right→Left→Forward→
Forward”.

Associations between Types of Errors and Task Characteristics
For each task, we computed the frequency of types of errors and then ran a few analyses
to test for associations between these frequencies and level number, the difficulty of the
task (based on SOLO taxonomy), and the computational thinking concept represented
by that task.

Level Number. Level number represents learners’ progression along the game. For each
level, we calculated the frequency of types of errors, considering the total number of
erroneous submissions in that level; this normalization was required in order to
compare between levels that differ from each other by the total number of erroneous
submissions. Then, we tested for Spearman’s correlation between the level and fre-
quency of the type of error. Findings are summarized in Table 2. As findings suggest,
none of the error types is significantly statistically correlated with the level number, that
is, there is no clear decreasing or increasing trend for any of them.

Computational Thinking Concept. Finally, we tested for correlations between the average
of frequency of each type of error and the progression along the game by computationa
thinking concept presented, while numbering concepts by their order of appearance
(1 – sequences, 2 – loops, 3 – conditionals). No significant correlations were found.
Findings are summarized in Table 3.

Task Difficulty. We continued by calculating frequencies of type of errors based on the
four difficulty levels, as determined by SOLO taxonomy (see Table 1). Therefore, we
averaged rate frequencies across levels of the same SOLO-based difficulty, and then
tested for Spearman’s correlation between frequency of type of error and SOLO-based
difficulty levels, which were ranked from 1 (Unistructural) to 4 (Extended Abstract).
Findings are summarized in Table 4. As findings suggest, Counting type of error
demonstrates a marginally statistically significant decreasing trend, that is, the more
difficult the level, based on SOLOTaxonomy, the less Counting errors are observed. On
the contrary, three types of errors—namely, Premature, Conditionals, and
Redundancy—demonstrate a marginally statistically significant increasing trend, that
is, the more difficult the level, based on SOLO Taxonomy, the more Premature,
Conditionals, and Redundancy errors are observed.

Ben-Yaacov and Hershkovitz 189

Alexander Repenning

Alexander Repenning

Alexander Repenning
residual



Table 2. Frequencies of error types by level of the game.

Level Total Decomposition Counting Repetition Orientation Premature Conditionals Redundancy

1 50 0.00 1.00 — 0.00 0.00 — 0.00
2 141 0.88 0.08 — 0.40 0.11 — 0.00
3 66 0.50 0.33 — 0.45 0.15 — 0.00
4 87 0.09 0.72 — 0.16 0.11 — 0.08
5 39 0.72 0.00 — 0.10 0.21 — 0.05
6 78 0.49 0.45 — 0.35 0.32 — 0.03
7 202 0.31 0.35 — 0.29 0.35 — 0.13
8 14 0.00 0.00 0.86 0.00 0.14 — 0.00
9 29 0.10 0.38 0.48 0.41 0.21 — 0.00

10 55 0.53 0.02 0.93 0.05 0.02 — 0.00
11 176 0.20 0.09 0.71 0.07 0.23 0.67 0.09
12 41 0.07 0.07 0.66 0.32 0.32 0.68 0.10
Spearman’s
correlation

!0.16 p = 0.62 !0.19 p = 0.55 !0.42 p = 0.18 !0.20 p = 0.78 !0.12 p = 0.72 0.49 p = 0.11 -a 0.39 p = 0.21

aSample size is too small for correlation analysis.

190
JournalofEducationalCom

puting
Research

61(1)



Table 3. Frequencies of error types by computational thinking concepts.

Computational Concept Decomposition Counting Repetition Orientation Premature Conditionals Redundancy

Sequencing 0.43 0.42 0.25 0.18 0.04
Loops 0.15 0.13 0.76 0.16 0.12 0.00
Conditions 0.20 0.08 0.68 0.20 0.28 0.68 0.09
Spearman’s correlation !1.00 p = 0.33 !1.00 p = 0.33 -a !0.50 p = 1.00 0.50 p = 1.00 -a 0.50 p = 1.00

aSample size is too small for correlation analysis.

Ben-Yaacov
and

H
ershkovitz

191



Table 4. Frequencies of error types by SOLO-based difficulty.

SOLO Level Decomposition Counting Repetition Orientation Premature Conditionals Redundancy

Unistructural 0.00 0.50 0.86 0.00 0.07 0.00
Multistructural 0.50 0.29 0.93 0.27 0.10 0.02
Relational 0.38 0.23 0.60 0.23 0.24 0.67 0.04
Extended abstract 0.19 0.21 0.66 0.30 0.33 0.68 0.11
Spearman’s correlation 0.20 p = 0.92 !1.00 p = 0.08 !0.60 p = 0.42 0.80 p = 0.33 1.00 p = 0.08 -a 1.00 p = 0.08

aSample size is too small for correlation analysis.

192
JournalofEducationalCom

puting
Research

61(1)



Associations between Types of Errors and Learner Characteristics
For each student, we calculated the rate of each type of error from their own total
erroneous submissions. Then, we compared between female and male frequencies for
each type of error separately, using t-test; similarly, we compared rates of type of error
between participants with and without programming experience.

Rate of Decomposition type of error was found to be marginally higher for males
than for females (M = 0.29, SD = 0.26, compared with M = 0.22, SD = 0.14), with
t(110) = 1.78, at p = 0.08. Other types of errors did not show significant differences
between female and male participants. Also, no differences in the rate of types of errors
were found between participants with and without coding experience. Findings are
summarized in Table 5.

Discussion
In this exploratory case study, we analyzed students’ (N = 123) unsuccessful sub-
missions in block-based programming. Based on an analysis of log files drawn from a
single online learning environment (Kodetu), we identified seven types of errors. We
will first point out that the overall rate of failed submissions in our study (37%) lies
within the extremely wide range found in previous studies—often referred to the rate of
failed compilations—which may get to as high as 90% (Blikstein, 2011; Ettles et al.,
2018; Pettit, 2014; Rivers et al., 2016). Importantly, we should recall that the learning
environment studied here is based on block programming, which was originally de-
veloped to decrease the complexity of coding and the number of potential errors
(Jackson et al., 2005; McCall & Kölling, 2015). Indeed, syntax errors are amongst the
most common errors for novice programmers (Ahadi et al., 2018; Fu et al., 2017;
Hristova et al., 2003), while the type of errors we point out are non-syntactic. Reducing
syntax errors is important, as they can substantially impact on the experience of
learning to program, and choosing the right programming language is therefore im-
portant (Mciver, 2000b).

Two Categories of Errors: Driven by Learner, Learning Environment
Overall, we identified seven types of errors, which we can classify into two broad
categories, as these errors were either mostly driven by the learner’s knowledge and
behavior or in the learning environment design.

Learner-Driven Errors. The first category, which is mostly learner-driven, relates to two
dimensions in Brennan and Resnick’s (2012) framework of studying CT, namely
concepts and practices, and to their acquisition and implementation by the learners.

Concepts are the cornerstones of engaging with CT; in block-based programming,
concepts are mapped to blocks. Indeed, in the learning environment we studied here,
there are blocks that—when joined together—control an astronaut’s path and guide her

Ben-Yaacov and Hershkovitz 193



Table 5. Frequencies of error types by gender, programming experience.

Decomposition Counting Repetition Orientation Premature Conditionals Redundancy

Gender
Female (N = 56) 0.22 (0.14) 0.17 (0.15) 0.17 (0.17) 0.14 (0.13) 0.11 (0.15) 0.11 (0.15) 0.07 (0.19)
Male (N = 56) 0.29 (0.26) 0.18 (0.21) 0.17 (0.21) 0.12 (0.14) 0.10 (0.13) 0.10 (0.15) 0.04 (0.14)
t-test (df = 110) 1.78 p = 0.08 0.42 p = 0.68 0.16 p = 0.87 1.08 p = 0.28 0.29 p = 0.77 0.58 p = 0.56 0.91 p = 0.36

Programming Experience?
Yes (N = 52) 0.26 (0.25) 0.20 (0.20) 0.15 (0.18) 0.12 (0.11) 0.11 (0.16) 0.09 (0.14) 0.08 (0.18)
No (N = 60) 0.26 (0.19) 0.15 (0.15) 0.19 (0.20) 0.14 (0.15) 0.10 (0.13) 0.12 (0.15) 0.04 (0.16)
t-test (df = 110) 0.05 p = 0.96 1.43 p = 0.16 1.15 p = 0.25 0.83 p = 0.41 0.59 p = 0.56 1.22 p = 0.23 1.09 p = 0.28

194
JournalofEducationalCom

puting
Research

61(1)



to her destinations. Besides blocks that control movement—i.e., moving forward and
turning—there are blocks that correspond to CT concepts of loops and conditionals.
Indeed, we identified errors that correspond to incorrectly constructing these structures,
which we classified under “repetition” and “conditional” types of errors. The prom-
inence of these types of errors while using a rather intuitive programming interface,
emphasizes students’ misconceptions of basic CT concepts, such as loops and con-
ditionals (Grover & Basu, 2017), although they are probably less prevalent in block
programming compared to text-based programming (Mladenović et al., 2018).
Therefore, it is recommended to explicitly teach about CT concepts using other tools
and methods, including unplugged activities (Caeli & Yadav, 2020; Delal & Oner,
2020).

CT practices refer to the ways in which learners think and learn, therefore depicting
the “how?” of the learning process, rather than just the “what?” (Brennan & Resnick,
2012). The “decomposition”, “premature”, and “redundant” types of errors fall under
this broad category, as they most probably derived from implementing (or incorrectly
implementing) problem-solving practices. Specifically, “decomposition” errors may be
related to the practice of modularizing, that is, building something large by first
building its smaller parts; “premature” errors may be a result of being incremental, that
is, trying to run codes prematurely in order to follow the resulting path step by step; and
“redundant” errors may be associated with either of these practices.

Notably, the characteristics of a programming language and the design of a learning
environment for programming may shape novices’ practices of coding (Weintrop &
Wilensky, 2018). This should be emphasized to educators, who could in turn explicitly
help students foster such practices (Kong et al., 2017). Furthermore, CT practices
should be continuously assessed, alongside with CT concepts, in order to have a more
comprehensive understanding of students’ progress; only this will allow supporting
them. In that sense, our approach of focusing on student errors may be taken as a
metaphor to a pedagogical practice of learning from errors; that is, educators should
encourage a culture where it is ok to make mistakes, as such mistakes would reveal
misconceptions, knowledge gaps, and unfruitful programming practices from which
students could grow (Basu et al., 2020).

Learning Envirovnment-Driven Errors. The second category of errors has mostly to do
with the design of the learning environment, and holds those errors related to counting
and orientation. These errors can be seen as inherent to the given learning environ-
ments, as guiding the astronaut to her destination—a task that by its very definition
requires counting and turn-making—is the learners’ goal. That they were evident in
over 50% of the erroneous codes we analyzed, demonstrates the crucial impact of the
user interface in block-based programming. To put it simply, a large portion of student
errors, when being presented with the foundations of programming, was a result of
misunderstanding or misinterpreting visual cues, that have little to do with pro-
gramming concepts or practices per se.

Ben-Yaacov and Hershkovitz 195

Alexander Repenning



These findings echo previous studies of teaching young children to program by
means of using friendly and seemingly-intuitive environments—either virtual or
physical—that demonstrated how visual-spatial cues may hinder learning (Simões
Gomes et al., 2018; Tony Andrew Lowe, 2018). Therefore, the obstructing mechanism
may be related to visual-spatial skills, which were previously found to be positively
associated with learning (Mathewson, 1999; Morrison, 2004; Salmerón & Garcı́a,
2012). Within the context of teaching programming to young learners, it is common to
engage them with problem-solving that requires visual-spatial abilities (e.g., in Code.
org, CodeMonkey, or CodeCombat), hence these abilities should be taken into con-
sideration while designing such learning environments and while using them for
teaching. Identifying these types of errors has a large contribution to the understanding
of novices’ errors in block programming, and extends previous attempts to classify such
errors (e.g., Emerson et al., 2020).

Associations Between Error Type and Personal and Task Characteristics
We found no associations between error type and learner characteristics, specifically
gender and prior coding experience. Previous studies indicated on differences in the
ways by which children with prior coding experience engage with programming or
computational thining tasks, and that such experience may impact their preferences
towards certain types of programming language (Bakali et al., 2018; Menounou et al.,
2019;Weintrop &Wilensky, 2015). To these, our findings add the important notion that
types of errors do not necessarily correlate with prior coding experience, which
highlights the importance of the very design of the learning environment.

As for gender, previous studies had demonstrated how girls and boys manifest
differently the way they construct block-based programs (Funke & Geldreich, 2017;
Hsu, 2014). When measuring achievementsin programming tasks, boys and girls do not
necessarily differ from each other (Abdullah et al., 2021; Vasilopoulos & van Schaik,
2018; Zha & Billingsley, 2021). Indeed, a large-scale, log-based study of the same
system used here (i.e., Kodetu), covering 3355 primary- and middle-school students,
has shown some complex associations of behavior within the system and gender, prior
coding experience (Eguı́luz et al., 2017). Therefore, our findings of no associations
between gender and error types may not be surprising.

Also, we pointed out the lack of associations between error types and game level or
concept taught, contrary to previous large-scale analyses that suggest a performance
decrease in both block-based and text-based learning environments for programming as
the game progresses (Eguı́luz et al., 2017; Israel-Fishelson & Hershkovitz, 2020); That
is, our study adds to the existing literature the notion that as learners progress in a
learning process, they may find it more difficult and hence submit more erroneous
solutions, but the very mechanisms that drive these failed submissions do not nec-
essarily change profoundly. This makes us reiterate the notion of learning from
mistakes, which we highlighted above, as a means to change learners’ behavior

196 Journal of Educational Computing Research 61(1)

http://Code.org
http://Code.org
Alexander Repenning
this is precisely what RULER does

Alexander Repenning

Alexander Repenning



meaningfully. Therefore, while using self-paced learning environments, learners may
benefit from some human- or machine-led guidance.

The only attribute that was found to be associated with the type of error was the task
complexity, as defined by SOLO taxonomy (Biggs & Collis, 1982). While counting
errors decrease as tasks become more complex, premature and redundancy errors
increase. Importantly, the tasks classified at the higher levels of SOLO taxonomy,
compared with those at the lower levels, are not necessarily characterized by shorter
paths of the puzzles they present, hence the decrease in counting-related errors is not
explained by the maze length, and may be easily explained by their familiarity with the
learning environment in which all tasks are designed similarly.

The increase in premature and redundant types of errors—which, as we explained
above, are related to CT practices—may indicate that students modify their problem-
solving strategies as tasks become more complex, probably working incrementally to a
larger extent and trying to break down the problem to smaller, simpler ones. As
previously suggested, students implement various strategies of problem solving in
programming, either textual of block-based, and it is the changes in these strategies, and
not merely the strategies themselves, that are more indicative on learning (Blikstein
et al., 2014; Kesselbacher & Bollin, 2019). In a sense, our findings echo Breland et al.’s
(2013) ideitnfication of learning pathways of novice programmers; their findings
demonstrated a shift from exploring to tinkering to refinement, which may be asso-
ciated with the increase we suggest in the use of a systemic way of problem-solving.

Therefore, identifying these changes sheds new light on the mechanisms that help
students transfer from visual to procedural programming (Yetunde, 2018), and em-
phasizes the importance role of block-based programming in strengthening the very
foundations of CT (Repenning, 2017; Sáez-López et al., 2016). Achieving this desired
goal was probably a result of the learning environment made of a series of seemingly-
similar tasks, which made the learners first familiar with the environment and its user
interface, and then led them towards the learning goal in small steps. This is indeed a
desired design principle of digital learning games, and at large of any learning ex-
perience (Diniz et al., 2015).

Nevertheless, for increasing the impact of this supportive design, it is advised to
make explicit the implementation and development of CT practices. This may be
achieved by guiding students through reflecting upon their problem-solving strategies,
as was previously demonstrated in various domains (Cengiz & Karataş, 2015; C. H. Lin
& Liu, 2012; Mason & Singh, 2016). Within the context of self-paced online learning
environments, such a reflective process could be guided by a virtual agent (Egbert et al.,
2021; Moechammad Sarosa et al., 2021).

Limitations
This study is not without limitations. We analyzed data from a single learning
platform (Kodetu), and therefore our findings may be influenced by unique char-
acteristics pertaining to this platform. Our analysis also focused on a dozen tasks

Ben-Yaacov and Hershkovitz 197

Alexander Repenning



which refer to a limited set of CT concepts, namely, sequence, loops, and condi-
tionals. It is of great importance to study all CT concepts (Barr & Stephenson, 2011;
Brennan & Resnick, 2012). Moreover, the analysis was focused on students from a
single country (Spain)—which has specific educational, cultural, and technological
characteristics—and on a specific age group. Therefore, it is advised to replicate this
study in other learning environments, and in other geographical and cultural settings.
Another limitation lies in the mechanism of progressing in the learning environment
studied, that is, the need to successfully complete a task before moving on to the next
one. This design principle may reduce errors that would otherwise arise because
students have had training and have gained experience in previous tasks. It is
possible, therefore, that more open, exploratory learning environments would yield
other types of errors, or at least other frequencies of the types we found, and therefore
encourage replicating this study is such environments. Still, we believe that we add an
important unique contribution to the literature, and that our study has valuable
implications.

Conclusions and Implications
In this study, we characterized students’ errors in block-based programming. We found
two broad categories of errors, driven by either learners’ knowledge and behavior or by
the learning environment design. Testing for associations between error types and
personal and task characteristics, we only found such a link between error types and
SOLO-defined task complexity, suggesting that it may indicate the development of
problem-solving strategies as a result of the design of the learning environment.

This study has a few important implications, of which we will highlight three. First,
identifying types of errors may lead to the improvement of CT acquisition processes
while using block-based programming. With no syntax involved, educators could use
student errors as learning opportunities to strengthen students’ understanding of the
foundations of CT, that is, to promote a culture of learning from errors. Second,
identification of error types may help support learners with formative feedback, and if
errors are detected and recognized automatically in real-time, this could serve to offer
students insightful, helpful support. Third, design characteristics may have a crucial
impact on learners’ progress—hence, being a key component in assessment
processes—and should be taken into consideration by developers and designers of
learning environment, as well as by educators and policy makers.

We recommend to further explore patterns of error in block programming and the
relationship between them and content- and task-characteristics.

Acknowledgments

The authors would like to thank to the members of DeustoLearningLab at the University of
Deusto for their ongoing collaboration and their continuous support. Special thanks to Prof.
Mariluz Guenaga (Director), Dr Pablo Garaizar, and Andoni Eguı́luz.

198 Journal of Educational Computing Research 61(1)

Alexander Repenning



Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship,
and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this
article.

ORCID iD

Arnon Hershkovitz  https://orcid.org/0000-0003-1568-2238

References

Abdullah, O., Kamaludin, A., & Rahman, N. S. A. (2021). Gender differences in computational
thinking skills among Malaysian’s primary school students using visual programming.
Proceedings of the International Conference on Software Engineering and Computer
Systems and 4th International Conference on Computational Science and Information
Management, 655–660. https://doi.org/10.1109/ICSECS52883.2021.00125

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Adewumi, S. (2019). A systematic review of
computational thinking approach for programming education in higher education institu-
tions. ACM International Conference Proceeding Series, 1–10. https://doi.org/10.1145/
3364510.3364521

Ahadi, A., Lal, S., Lister, R., & Hellas, A. (2018). Learning programming, syntax errors and
institution-specific factors. ACM International Conference Proceeding Series, 90–96.
https://doi.org/10.1145/3160489.3160490

Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing:
A revision of Bloom’s taxonomy of educational objectives. Longman.

Armoni, M., Meerbaum-Salant, O., & Ben-Ari, M. (2015). From scratch to “real” programming.
ACM Transactions on Computinig Education, 14(4), 1–15. https://doi.org/10.1145/2677087

Bakali, I., Fourtounis, N., Theodoulidis, A., Chatzis, D., Soulountsi, M., Papanastasiou, P.,
Kavallieratou, E., Manos, N., &Mavropoulos, N. (2018, July 9). Control a robot via internet
using a block programming platform for educational purposes. ACM International Con-
ference Proceeding Series. https://doi.org/10.1145/3200947.3201063

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved
and what is the role of the computer science education community? ACM Inroads, 2(1),
48–54. https://doi.org/10.1145/1929887.1929905

Basu, S., Rutstein, D., Xu, Y., & Shear, L. (2020). A principled approach to designing a
computational thinking practices assessment for early grades. Proceedings of the 51st ACM
Technical Symposium on Computer Science Education, 7. https://doi.org/10.1145/3328778

Becker, B. A., Glanville, G., Iwashima, R., McDonnell, C., Goslin, K., & Mooney, C. (2016).
Effective compiler error message enhancement for novice programming students.Computer
Science Education, 26(2–3), 148–175. https://doi.org/10.1080/08993408.2016.1225464

Ben-Yaacov and Hershkovitz 199

https://orcid.org/0000-0003-1568-2238
https://orcid.org/0000-0003-1568-2238
https://doi.org/10.1109/ICSECS52883.2021.00125
https://doi.org/10.1145/3364510.3364521
https://doi.org/10.1145/3364510.3364521
https://doi.org/10.1145/3160489.3160490
https://doi.org/10.1145/2677087
https://doi.org/10.1145/3200947.3201063
https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1145/3328778
https://doi.org/10.1080/08993408.2016.1225464


Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis, D. (2013). Using learning
analytics to understand the learning pathways of novice programmers. Journal of the
Learning Sciences, 22(4), 564–599. https://doi.org/10.1080/10508406.2013.836655

Biggs, J., & Collis, K. F. (1982). Evaluating the quality of learning: The SOLO taxonomy. In A
handbook for teaching and learning in higher education: Enhancing academic practice.
Academic Press.

Blikstein, P. (2011). Using learning analytics to assess students ’ behavior in open-ended
programming tasks. Proceedings of the 1st International Conference on Learning Ana-
lytics and Knowledge, 110–116. https://doi.org/10.1145/2090116.2090132

Blikstein, P., Worsley, M., Piech, C., Sahami, M., Cooper, S., & Koller, D. (2014). Programming
pluralism: Using learning analytics to detect patterns in the learning of computer pro-
gramming. Journal of the Learning Sciences, 23(4), 561–599. https://doi.org/10.1080/
10508406.2014.954750

Bloom, B. S., Engelhart, M. D., Furst, E. J., Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy of
educational objectives: The classification of educational goals. Handbook I: Cognitive
domain. David McKay Company.

Brennan, K., & Resnick, M. (2012).New frameworks for studying and assessing the development
of computational thinking (pp. 1–25). 2012 Annual Meeting of the American Educational
Research Association. https://doi.org/10.1.1.296.6602

Caeli, E. N., & Yadav, A. (2020). Unplugged approaches to computational thinking: A historical
perspective. TechTrends, 64(1), 29–36. https://doi.org/10.1007/s11528-019-00410-5

Cengiz, C., & Karataş, F. Ö. (2015). Examining the effects of reflective journals on pre-service
science teachers’ general chemistry laboratory achievement. Australian Journal of Teacher
Education, 40(10), 125–146. https://doi.org/10.14221/ajte.2015v40n10.8

Chan Mow, I. T. (2012). Analyses of student programming errors in Java programming courses.
Journal of Emerging Trends in Computing and Information Sciences, 3(5), 739–749.

Delal, H., & Oner, D. (2020). Developing middle school students’ computational thinking skills
using unplugged computing activities. Informatics in Education, 19(1), 1–13. https://doi.
org/10.15388/INFEDU.2020.01

Diniz, A., Santos, D., & Fraternali, P. (2015). A comparison of methodological frameworks for
digital learning game design. International Conference on Games and Learning Alliance,
9599, 111–120.

Egbert, J., Shahrokni, S. A., Abobaker, R., & Borysenko, N. (2021). It’s a chance to make
mistakes”: Processes and outcomes of coding in 2nd grade classrooms. Computers &
Education, 168, 104173. https://doi.org/10.1016/J.COMPEDU.2021.104173

Eguı́luz, A., Guenaga, M., Garaizar, P., & Olivares-Rodrı́guez, C. (2017). Exploring the pro-
gression of early programmers in a set of computational thinking challenges via clickstream
analysis. IEEE Transactions on Emerging Topics in Computing, 8(1), 256–261. https://doi.
org/10.1109/tetc.2017.2768550

Emerson, A., Smith, A., Rodriguez, F. J., Wiebe, E. N., Mott, B. W., Boyer, K. E., & Lester, J. C.
(2020). Cluster-based analysis of novice coding misconceptions in block-based pro-
gramming. Annual Conference on Innovation and Technology in Computer Science Ed-
ucation, ITiCSE, 825–831. https://doi.org/10.1145/3328778.3366924

200 Journal of Educational Computing Research 61(1)

https://doi.org/10.1080/10508406.2013.836655
https://doi.org/10.1145/2090116.2090132
https://doi.org/10.1080/10508406.2014.954750
https://doi.org/10.1080/10508406.2014.954750
https://doi.org/10.1.1.296.6602
https://doi.org/10.1007/s11528-019-00410-5
https://doi.org/10.14221/ajte.2015v40n10.8
https://doi.org/10.15388/INFEDU.2020.01
https://doi.org/10.15388/INFEDU.2020.01
https://doi.org/10.1016/J.COMPEDU.2021.104173
https://doi.org/10.1109/tetc.2017.2768550
https://doi.org/10.1109/tetc.2017.2768550
https://doi.org/10.1145/3328778.3366924


Ettles, A., Luxton-Reilly, A., & Denny, P. (2018). Common logic errors made by novice
programmers. ACM International Conference Proceeding Series, 83–89. https://doi.org/10.
1145/3160489.3160493

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in
programming with Scratch in primary schools: A systematic review. Computer
Applications in Engineering Education, 29(1), 12–28. https://doi.org/10.1002/CAE.
22255

Funke, A., & Geldreich, K. (2017). Gender dierences in scratch programs of primary school
children. ACM International Conference Proceeding Series, 57–64. https://doi.org/10.1145/
3137065.3137067

Fu, X., Shimada, A., Ogata, H., Taniguchi, Y., & Suehiro, D. (2017). Real-time learning analytics
for C programming language courses. ACM International Conference Proceeding Series,
280–288. https://doi.org/10.1145/3027385.3027407

Ginat, D., & Menashe, E. (2015). SOLO taxonomy for assessing novices’ algorithmic design.
SIGCSE 2015 - Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, 452–457. https://doi.org/10.1145/2676723.2677311

Ginat, D., & Shmallo, R. (2013). Constructive use of errors in teaching CS1. SIGCSE 2013 -
Proceedings of the 44th ACM Technical Symposium on Computer Science Education,
353–358. https://doi.org/10.1145/2445196.2445300

Gladwin, L. A. (1987). Intention-based diagnosis of novice programming errors. IEEE Expert-
Intelligent Systems and Their Applications, 2(3), 162–168. https://doi.org/10.1109/MEX.
1987.4307101

Grandell, L., Peltomäki, M., & Salakoski, T. (2005). High school programming - A beyond-
syntax analysis of novice programmers’ difficulties. Koli Calling 2005 Conference on
Computer Science Education, 17–24.

Grover, S., & Basu, S. (2017). Measuring student learning in introductory block-based pro-
gramming: Examining misconceptions of loops, variables, and Boolean logic. Proceedings
of the Conference on Integrating Technology Into Computer Science Education, ITiCSE,
267–272. https://doi.org/10.1145/3017680.3017723

Guenaga, M., Eguı́luz, A., Garaizar, P., & Gibaja, J. (2021). How do students develop
computational thinking? Assessing early programmers in a maze-based online game.
Computers & Education, 31(2), 259–289. https://doi.org/10.1080/08993408.2021.
1903248

Haleva, L., Hershkovitz, A., & Tabach, M. (2021). Students’ activity in an online learning
environment for mathematics: The role of thinking levels. Journal of Educational Com-
puting Research, 59(4), 686–712. https://doi.org/10.1177/0735633120972057

Harrison, W. S, & Hanebutte, N. (2018). Embracing coding mistakes to teach computational
thinking. Journal of Computing Sciences in Colleges, 33(6), 52–62.

Hershkovitz, A., Sitman, R., Israel-Fishelson, R., Eguı́luz, A., Garaizar, P., & Guenaga, M.
(2019). Creativity in the acquisition of computational thinking. Interactive Learning
Environments, 27(5–6), 628–644. https://doi.org/10.1080/10494820.2019.1610451

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003). Identifying and correcting Java
programming errors for introductory computer science students. SIGCSE Bulletin

Ben-Yaacov and Hershkovitz 201

https://doi.org/10.1145/3160489.3160493
https://doi.org/10.1145/3160489.3160493
https://doi.org/10.1002/CAE.22255
https://doi.org/10.1002/CAE.22255
https://doi.org/10.1145/3137065.3137067
https://doi.org/10.1145/3137065.3137067
https://doi.org/10.1145/3027385.3027407
https://doi.org/10.1145/2676723.2677311
https://doi.org/10.1145/2445196.2445300
https://doi.org/10.1109/MEX.1987.4307101
https://doi.org/10.1109/MEX.1987.4307101
https://doi.org/10.1145/3017680.3017723
https://doi.org/10.1080/08993408.2021.1903248
https://doi.org/10.1080/08993408.2021.1903248
https://doi.org/10.1177/0735633120972057
https://doi.org/10.1080/10494820.2019.1610451


(Association for Computing Machinery, Special Interest Group on Computer Science
Education, 35(1), 153–156. https://doi.org/10.1145/792548.611956

Hsu, H.-M. J. (2014). Gender differences in scratch game design. 3rd International Conference
on Information, Business and Education Technology, 100–103.

Israel-Fishelson, R., & Hershkovitz, A. (2020). Shooting for the stars: Micro-persistence of
students in game-based learning environments. In D. Glick, A. Cohen, & C. Chang (Eds.),
Early warning systems and targeted interventions for student success in online courses
(pp. 239–258). IGI Global. https://doi.org/10.4018/978-1-7998-5074-8.ch012

Israel-Fishelson, R., Hershkovitz, A., Eguı́luz, A., Garaizar, P., & Guenaga, M. (2021). The
associations between computational thinking and creativity: The role of personal charac-
teristics. Journal of Educational Computing Research, 58(8), 1415–1447. https://doi.org/
10.1177/0735633120940954

Izu, C.,Weerasinghe, A., & Pope, C. (2016). A study of code design skills in novice programmers
using the SOLO taxonomy. ICER 2016 - Proceedings of the 2016 ACM Conference on
International Computing Education Research, 251–259. https://doi.org/10.1145/2960310.
2960324

Jackson, J., Cobb, M., & Carver, C. (2005). Identifying top java errors for novice programmers.
Proceedings - Frontiers in Education Conference, FIE, 2005, 24–27. https://doi.org/10.
1109/fie.2005.1611967

Kaspersen, M. H., Graungaard, D., Bouvin, N. O., Petersen, M. G., & Eriksson, E. (2021).
Towards a model of progression in computational empowerment in education. International
Journal of Child-Computer Interaction, 29, 100302. https://doi.org/10.1016/J.IJCCI.2021.
100302

Kelleher, C., Cosgrove, D., & Culyba, D. (2002). Alice2: Programming without syntax errors
(pp. 3–4). User Interface Software and Technology - UIST 2002.

Kesselbacher, M., & Bollin, A. (2019). Discriminating programming strategies in scratch -
Making the difference between novice and experienced programmers. Proceedings of the
14th Workshop in Primary and Secondary Computing Education, 1–10. https://doi.org/10.
1145/3361721.3361727

Koehler, A. T. (2020). A methodology for teaching from student errors in computer science
education. Unpublished Ph.D. Dissertation. University of California Riverside.

Ko, A. J., &Myers, B. A. (2003). Development and evaluation of a model of programming errors.
Proceedings - 2003 IEEE Symposium on Human Centric Computing Languages and
Environments HCC 2003, 7–14. https://doi.org/10.1109/HCC.2003.1260196

Kong, S.-C., Abelson, H., Sheldon, J., Lao, A, Tissenbaum, M., Lai, M., Lang, K., & Lao, N.
(2017). Curriculum activities to foster primary school students’ computational practices in
block-based programming environments. In S. C. Kong, J. Sheldon, & K. Y. Li (Eds.),
Conference Proceedings of International Conference on Computational Thinking Edu-
cation (pp. 84–89). Hong Kong: The Education University of Hong Kong.

Lai, G. C. H., Kwok, R. C. W., & Kong, J. S. L. (2020). Teaching computational thinking and
python programming for business students: A preliminary study of the alignment of
teaching and learning strategies with bloom’s taxonomy of learning outcomes. Proceedings
of International Conference on Computational Thinking Education, 116–120.

202 Journal of Educational Computing Research 61(1)

https://doi.org/10.1145/792548.611956
https://doi.org/10.4018/978-1-7998-5074-8.ch012
https://doi.org/10.1177/0735633120940954
https://doi.org/10.1177/0735633120940954
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1145/2960310.2960324
https://doi.org/10.1109/fie.2005.1611967
https://doi.org/10.1109/fie.2005.1611967
https://doi.org/10.1016/J.IJCCI.2021.100302
https://doi.org/10.1016/J.IJCCI.2021.100302
https://doi.org/10.1145/3361721.3361727
https://doi.org/10.1145/3361721.3361727
https://doi.org/10.1109/HCC.2003.1260196


Lin, C. H., & Liu, E. Z. F. (2012). The effect of reflective strategies on students’ problem solving
in robotics learning. Proceedings 2012 4th IEEE International Conference on Digital Game
and Intelligent Toy Enhanced Learning, DIGITEL 2012, 254–257. https://doi.org/10.1109/
DIGITEL.2012.67

Lin, L., Parmar, D., Babu, S. v., Leonard, A. E., Daily, S. B., & Jörg, S. (2017, September 16).
How character customization affects learning in computational thinking. Proceedings - SAP
2017, ACM Symposium on Applied Perception, 1–8. https://doi.org/10.1145/3119881.
3119884

Lister, R., Simon, B., Thompson, E., Whalley, J. L., & Prasad, C. (2006). Not seeing the forest for
the trees: Novice programmers and the SOLO taxonomy.Working Group Reports on ITiCSE
on Innovation and Technology in Computer Science Education 2006, 38(3), 118–122.
https://doi.org/10.1145/1140124.1140157

Lowe, T. A. (2018). Misconceptions and the notional machine in very young programming
learners. American Society for Engineering Education Annual Conference & Exposition.

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking
through programming: What is next for K-12? Computers in Human Behavior, 41, 51–61.
https://doi.org/10.1016/j.chb.2014.09.012

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch pro-
gramming language and environment. ACM Transactions on Computing Education, 10(4),
1–15. https://doi.org/10.1145/1868358.1868363

Marwan, S., Jay Williams, J., & Price, T. (2019). An evaluation of the impact of automated
programming hints on performance and learning. Proceedings of the 2019 ACMConference
on International Computing Education Research, 61–70. https://doi.org/10.1145/3291279

Masapanta-Carrión, S., & Velázquez-Iturbide, J. Á. (2018). A systematic review of the use of
Bloom’s taxonomy in computer science education. SIGCSE 2018 - Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, 441–446. https://doi.org/10.
1145/3159450.3159491

Mason, A. J., & Singh, C. (2016). Impact of guided reflection with peers on the development of
effective problem solving strategies and physics learning. The Physics Teacher, 54(5),
295–299. https://doi.org/10.1119/1.4947159

Mathewson, J. H. (1999). Visual-spatial thinking: An aspect of science overlooked by educators.
Science Education, 83(1), 33–54. https://doi.org/10.1002/(sici)1098-237x(199901)83:
1<33::aid-sce2>3.0.co;2-z

McCall, D., & Kölling, M. (2015). Meaningful categorisation of novice programmer errors.
Proceedings - Frontiers in Education Conference, FIE, 2015-Febru(February). https://doi.
org/10.1109/FIE.2014.7044420.

McIver, L. (2000a). The effect of programming language on error rates of novice
programmers. 12th Workshop of the Psychology of Programming Interest Group,
181–192.

Mciver, L. (2000b). The effect of programming language on error rates of novice programmers.
In A.F. Blackwell & E. Bilotta (Eds.), Proceedings of the 12th workshop of the psychology of
programming interest group (pp. 181–192). www.ppig.org.

Ben-Yaacov and Hershkovitz 203

https://doi.org/10.1109/DIGITEL.2012.67
https://doi.org/10.1109/DIGITEL.2012.67
https://doi.org/10.1145/3119881.3119884
https://doi.org/10.1145/3119881.3119884
https://doi.org/10.1145/1140124.1140157
https://doi.org/10.1016/j.chb.2014.09.012
https://doi.org/10.1145/1868358.1868363
https://doi.org/10.1145/3291279
https://doi.org/10.1145/3159450.3159491
https://doi.org/10.1145/3159450.3159491
https://doi.org/10.1119/1.4947159
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1109/FIE.2014.7044420
http://www.ppig.org


Menounou, G., Pantelopoulou, S., Karaliopoulou, M., & Kanidis, E. (2019). Students’ per-
ceptions on using a dual modality programming environment. European Journal of En-
gineering Research and Science, 19–27. https://doi.org/10.24018/ejers.2019.0.cie.1292

Metcalfe, J. (2017). Learning from errors. Annual Review of Psychology, 68(1), 465–489. https://
doi.org/10.1146/annurev-psych-010416-044022

Mladenović, M., Boljat, I., & Žanko, Ž. (2018). Comparing loops misconceptions in block-based
and text-based programming languages at the K-12 level. Education and Information
Technologies, 23(4), 1483–1500. https://doi.org/10.1007/s10639-017-9673-3

Mohd Darby, N., & Mat Rashid, A. (2017). Critical thinking disposition: The effects of infusion
approach in engineering drawing. Journal of Education and Learning, 6(3), 305. https://doi.
org/10.5539/jel.v6n3p305

Montiel, H., & Gomez-Zermeño, M. G. (2021). Educational challenges for computational
thinking in k–12 education: A systematic literature review of “scratch” as an innovative
programming tool. Computers, 10(6), 69. https://doi.org/10.3390/computers10060069

Morrison, J. B. (2004). The effect of spatial ability on learning from text and graphics. Pro-
ceedings of the Annual Meeting of the Cognitive Science Society, 26(26), 1608.

Nalaka, E. M., & Edirisinghe, S. (2008). Teaching students to identify common programming
errors using a game. SIGITE’08: Proceedings of the 9th ACM SIG-Information Technology
Education Conference, 14, 95–98. https://doi.org/10.1145/1414558.1414586

Osadi, K. A., Fernando, M. G. N. A. S., & Welgama, W. V. (2017). Ensemble classifier based
Approach for classification of examination questions into Bloom’s Taxonomy cognitive
levels. International Journal of Computer Applications, 162(4), 1–6. https://doi.org/10.
5120/ijca2017913328

Ouahbi, I., Kaddari, F., Darhmaoui, H., Elachqar, A., & Lahmine, S. (2015). Learning basic
programming concepts by creating games with Scratch programming environment. Pro-
cedia - Social and Behavioral Sciences, 191, 1479–1482. https://doi.org/10.1016/j.sbspro.
2015.04.224

Parmar, D., Lin, L., Dsouza, N., Joerg, S., Leonard, A. E., Daily, S. B., & Babu, S. (2022). How
immersion and self-avatars in VR affect learning programming and computational thinking
in middle school education. IEEE Transactions on Visualization and Computer Graphics, 1.
https://doi.org/10.1109/TVCG.2022.3169426

Petersen, A., Craig, M., & Zingaro, D. (2011). Reviewing CS1 exam question content.
SIGCSE’11 - Proceedings of the 42nd ACM Technical Symposium on Computer Science
Education, 631–636. https://doi.org/10.1145/1953163.1953340

Pettit, M. A. M. (2014). A case study of the implementation of iPads with high school students
at two charter high schools in Southern California. [unpublished Ph.D. Dissertation].
Vol. 3630494. http://pepperdine.contentdm.oclc.org/cdm/ref/collection/p15093coll2/id/
469

Qian, Y., & Lehman, J. D. (2019). Using targeted feedback to address common student mis-
conceptions in introductory programming: A data-driven approach. 9(4),
215824401988513https://doi.org/10.1177/2158244019885136

204 Journal of Educational Computing Research 61(1)

https://doi.org/10.24018/ejers.2019.0.cie.1292
https://doi.org/10.1146/annurev-psych-010416-044022
https://doi.org/10.1146/annurev-psych-010416-044022
https://doi.org/10.1007/s10639-017-9673-3
https://doi.org/10.5539/jel.v6n3p305
https://doi.org/10.5539/jel.v6n3p305
https://doi.org/10.3390/computers10060069
https://doi.org/10.1145/1414558.1414586
https://doi.org/10.5120/ijca2017913328
https://doi.org/10.5120/ijca2017913328
https://doi.org/10.1016/j.sbspro.2015.04.224
https://doi.org/10.1016/j.sbspro.2015.04.224
https://doi.org/10.1109/TVCG.2022.3169426
https://doi.org/10.1145/1953163.1953340
http://pepperdine.contentdm.oclc.org/cdm/ref/collection/p15093coll2/id/469
http://pepperdine.contentdm.oclc.org/cdm/ref/collection/p15093coll2/id/469
https://doi.org/10.1177/2158244019885136


Rach, S., Ufer, S., & Heinze, A. (2013). Learning from errors: Effects of reachers training on
students’ attitudes towards and their individual us of errors. Proceedings of the National
Academy of Sciences, 8(1), 21–30. https://doi.org/10.30827/pna.v8i1.6122

Rangie, J., Obispo, C., Enrique, F., Castro, V. G., Mercedes, M., & Rodrigo, T. (2018). Incidence
of einstellung effect among programming students and its relationship with achievement.

Repenning, A. (2017). Moving beyond syntax: Lessons from 20 years of blocks programing in
agentsheets. Journal of Visual Languages and Sentient Systems, 3(1), 68–91. https://doi.org/
10.18293/vlss2017-010

Rivers, K., Harpstead, E., & Koedinger, K. (2016). Learning curve analysis for programming:
Which concepts do students struggle with? ICER 2016 - Proceedings of the 2016 ACM
Conference on International Computing Education Research, 143–151. https://doi.org/10.
1145/2960310.2960333

Rodrigo, M. M. T., Andallaza, T. C. S., Castro, F. E. V. G., Armenta, M. L. V., Dy, T. T., &
Jadud, M. C. (2013). An analysis of java programming behaviors, affect, perceptions, and
syntax errors among low-achieving, average, and high-achieving novice programmers.
Journal of Educational Computing Research, 49(3), 293–325. https://doi.org/10.2190/EC.
49.3.b

Rubin, J., & Rajakaruna, M. (2015). Teaching and assessing higher order thinking in the
mathematics classroom with clickers. International Electronic Journal of Mathematics
Education, 10(1), 37–51. https://doi.org/10.12973/mathedu.2015.103a

Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming
languages integrated across the curriculum in elementary school: A two year case study
using “Scratch” in five schools. Computers & Education, 97, 129–141. https://doi.org/10.
1016/J.COMPEDU.2016.03.003

Salmerón, L., & Garcı́a, V. (2012). Children’s reading of printed text and hypertext with
navigation overviews: The role of comprehension, sustained attention, and visuo-spatial
abilities. Journal of Educational Computing Research, 47(1), 33–50. https://doi.org/10.
2190/ec.47.1.b

Sarosa, M., Kusumawadhani, M., Suyono, A., & Mulyani Azis, Y. (2021). The effectiveness of
chatbot as an online learning method on active and reflective learning styles. Multicultural
Education, 7(9), 92–100. https://doi.org/10.5281/zenodo.5484411

Seiter, L. (2015). Using SOLO to classify the programming responses of primary grade students.
SIGCSE 2015 - Proceedings of the 46th ACM Technical Symposium on Computer Science
Education, 540–545. https://doi.org/10.1145/2676723.2677244

Selby, C. C. (2015). Relationships: Computational thinking, pedagogy of programming, and
Bloom’s taxonomy. ACM International Conference Proceeding Series, 09-11-November-
2015, 80–87. https://doi.org/10.1145/2818314.2818315

Seo, H., Sadowski, C., Elbaum, S., Aftandilian, E., & Bowdidge, R. (2014). Programmers’ build
errors: A case study (at Google). International Conference on Software Engineering, 1,
724–734. https://doi.org/10.1145/2568225.2568255

Seraj, M., Katterfeldt, E. S., Bub, K., Autexier, S., & Drechsler, R. (2019). Scratch and google
blockly: How girls’ programming skills and attitudes are influenced. PervasiveHealth:

Ben-Yaacov and Hershkovitz 205

https://doi.org/10.30827/pna.v8i1.6122
https://doi.org/10.18293/vlss2017-010
https://doi.org/10.18293/vlss2017-010
https://doi.org/10.1145/2960310.2960333
https://doi.org/10.1145/2960310.2960333
https://doi.org/10.2190/EC.49.3.b
https://doi.org/10.2190/EC.49.3.b
https://doi.org/10.12973/mathedu.2015.103a
https://doi.org/10.1016/J.COMPEDU.2016.03.003
https://doi.org/10.1016/J.COMPEDU.2016.03.003
https://doi.org/10.2190/ec.47.1.b
https://doi.org/10.2190/ec.47.1.b
https://doi.org/10.5281/zenodo.5484411
https://doi.org/10.1145/2676723.2677244
https://doi.org/10.1145/2818314.2818315
https://doi.org/10.1145/2568225.2568255


Pervasive Computing Technologies for Healthcare, 1–10. https://doi.org/10.1145/3364510.
3364515

Shooman, M. L., & Bolsky, M. I. (1975). Types, distribution, and test and correction times for
programming errors. ACM SIGPLAN Notices, 10(6), 347–357. https://doi.org/10.1145/
800027.808457

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Edu-
cational Research Review, 22(1), 142–158. https://doi.org/10.1016/j.edurev.2017.09.003

Simões Gomes, T. C., Pontual Falcão, T., & Cabral de Azevedo Restelli Tedesco, P. (2018).
Exploring an approach based on digital games for teaching programming concepts to young
children. International Journal of Child-Computer Interaction, 16, 77–84. https://doi.org/
10.1016/j.ijcci.2017.12.005

Smith, R., & Rixner, S. (2019). The error landscape: Characterizing the mistakes of novice
programmers. SIGCSE 2019 - Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, 538–544. https://doi.org/10.1145/3287324.3287394

Socratous, C., & Ioannou, A. (2020). Common errors, successful debugging, and engagement
during block-based programming using educational robotics in elementary education. 14th
International Conference of the Learning Sciences, 991–998.

Staub, J. (2021). Programming in k-6: Understanding errors and supporting autonomous
learning. Unpublished Ph.D. Dissertation. ETH Zürich.

Tatar, C., & Eseryel, D. (2019). A literature review: Fostering computational thinking through
game-based learning in K-12. The 42nd Annual Convention of The Association for the
Educational Communications and Technology, 288–297.

Theodoropoulos, A., & Lepouras, G. (2020). Digital game-based learning and computational
thinking in P-12 education: A systematic literature review on playing games for earning
programming. In M. Kalogiannakis & S. Papadakis (Eds.), Handbook of research on tools
for teaching computational thinking in p-12 education (pp. 159–183). IGI Global. https://
doi.org/10.4018/978-1-7998-4576-8.CH007

Thompson, S. M. (2006). Exploratory study of novice programming experiences and error.
Unpublished Master’s thesis. University of Victoria.

Tulis, M., Steuer, G., & Dresel, M. (2016). Learning from errors: A model of individual pro-
cesses. Frontline Learning Research, 4(4), 12–26. https://doi.org/10.14786/flr.v4i2.168

Ullah, Z., Lajis, A., Jamjoom, M., Altalhi, A., & Saleem, F. (2020). Bloom’s taxonomy: A
beneficial tool for learning and assessing students’ competency levels in computer pro-
gramming using empirical analysis. Computer Applications in Engineering Education,
28(6), 1628–1640. https://doi.org/10.1002/CAE.22339

Vasilopoulos, I. v., & van Schaik, P. (2018). Koios: Design, development, and evaluation of an
educational visual tool for Greek novice programmers. Journal of Educational Computing
Research, 57(5), 1227–1259. https://doi.org/10.1177/0735633118781776

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: Students’
perceptions of blocks-based programming. Proceedings of IDC 2015: The 14th Interna-
tional Conference on Interaction Design and Children, 199–208. https://doi.org/10.1145/
2771839.2771860

206 Journal of Educational Computing Research 61(1)

https://doi.org/10.1145/3364510.3364515
https://doi.org/10.1145/3364510.3364515
https://doi.org/10.1145/800027.808457
https://doi.org/10.1145/800027.808457
https://doi.org/10.1016/j.edurev.2017.09.003
https://doi.org/10.1016/j.ijcci.2017.12.005
https://doi.org/10.1016/j.ijcci.2017.12.005
https://doi.org/10.1145/3287324.3287394
https://doi.org/10.4018/978-1-7998-4576-8.CH007
https://doi.org/10.4018/978-1-7998-4576-8.CH007
https://doi.org/10.14786/flr.v4i2.168
https://doi.org/10.1002/CAE.22339
https://doi.org/10.1177/0735633118781776
https://doi.org/10.1145/2771839.2771860
https://doi.org/10.1145/2771839.2771860


Weintrop, D., & Wilensky, U. (2018). How block-based, text-based, and hybrid block/text
modalities shape novice programming practices. International Journal of Child-Computer
Interaction, 17, 83–92. https://doi.org/10.1016/j.ijcci.2018.04.005

Whalley, J., Clear, T., Robbins, P., & Thompson, E. (2011). Salient elements in novice solutions
to code writing problems. Conferences in Research and Practice in Information Technology
Series, 212(2839), 37–45.

Yarygina, O. (2020). Learning analytics of CS0 students programming errors: The case of data
science minor. ACM International Conference Proceeding Series, 149–152. https://doi.org/
10.1145/3377290.3377319

Yetunde, T. F. (2018). Taking first year college students’ programming skills from the visual to the
procedural. Unpublished Ph.D. dissertation.

Zha, S., & Billingsley, J. (2021). Understanding students’ pre-existing computational thinking
skills and its relationship with their block programming performance. The 42nd Annual
Convention of The Association for the Educational Communications and Technology, 59(8),
265–268. https://doi.org/10.1177/07356331211004048

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking through
Scratch in K-9. Computers and Education, 141(2018), 103607. https://doi.org/10.1016/j.
compedu.2019.103607

Authors Biographies

Anat Ben-Yaacov is a computer science education expert. She earned an MA in
Computer Science Education (2021) from Tel Aviv University’s School of Education
(Israel), an MBA (2007) from Heriot-Watt University (Edinburgh, Scotland) and a BA
in Computer Science (1999) from The Academic College of Tel Aviv-Yaffo (Israel).
She works as a computer science educator at The Academic College of Tel Aviv-Yaffo
and at an Israeli high school. She serves as a pedagogy developer for ed-tech com-
panies, and leads a teachers community. Prior to her educational career, she worked as a
product manager and solution engineer in the high-Tech industry.

Arnon Hershkovitz, PhD, is a senior lecturer at Tel Aviv University’s School of
Education (Israel). He earned his Ph.D. in Science Education from Tel Aviv University,
Israel, in 2011, after completing his MA in Applied Mathemathematics (2003), and BA
in Mathematics and Computer Science (1996) at the Technion Israel Institute of
Technology. He was a post-doctoral research associate in the Department of Human
Development at Teachers College Columbia University (NYC), and had spent a visiting
professor fellowship at Northwestern University’s School of Education and Social
Policy (Evanston, IL). He had served as a co-editor of Technology, Instruction,
Cognition and Learning (TICL) and of the Journal of Learning Analytics (JLA), and
has served as chair and reviewer for many peer-reviewed conferences. He is an alumni
of the European Commission’s Marie Curie Career Integration Grant. His main re-
search interests are the application of learning analytics methods to studying the skills
that learners and instructors require in today’s digital age.

Ben-Yaacov and Hershkovitz 207

https://doi.org/10.1016/j.ijcci.2018.04.005
https://doi.org/10.1145/3377290.3377319
https://doi.org/10.1145/3377290.3377319
https://doi.org/10.1177/07356331211004048
https://doi.org/10.1016/j.compedu.2019.103607
https://doi.org/10.1016/j.compedu.2019.103607

	Types of Errors in Block Programming: Driven by Learner, Learning Environment
	Introduction
	Literature Review
	Errors in Programming
	Block Programming
	Using Taxonomies of Learning in Computer Science Education

	Methodology
	Population and Data Collection
	Learning Environment: Kodetu
	Classifying Kodetu Challenges Based on SOLO Taxonomy
	Dataset and Preprocessing
	Research Process

	Findings
	Types of Errors
	Associations between Types of Errors and Task Characteristics
	Level Number
	Computational Thinking Concept
	Task Difficulty

	Associations between Types of Errors and Learner Characteristics

	Discussion
	Two Categories of Errors: Driven by Learner, Learning Environment
	Learner-Driven Errors
	Learning Envirovnment-Driven Errors

	Associations Between Error Type and Personal and Task Characteristics
	Limitations

	Conclusions and Implications
	Acknowledgments
	Declaration of conflicting interests
	Funding
	ORCID iD
	References
	Authors Biographies


